l-1-Deoxy-1-fluoro-6-O-methyl-myo-inositol was epimerized by chloral/DCC in boiling 1,2-dichloroethane yielding D-1-O-cyclohexylcarbamoyl-2-deoxy-2-fluoro-3-O-methyl-5,6-O-[(R/S)-2,2,2-trichloroethylidene]-chiro-inositol. The latter and l-4-O-benzyl-3-O-cyclohexylcarbamoyl-5-O-methyl-1,2-O-(2,2,2-trichloroethylidene)-muco-inositol, l-4-O-benzyl-3-O-cyclohexylcarbamoyl-1,2-O-ethylidene-5-O-methyl-muco-inositol, d-1-O-cyclohexylcarbamoyl-2-deoxy-5,6-O-ethylidene-2-fluoro-3-O-methyl-chiro-inositol, as well as D-5-O-benzyl-4-O-cyclohexylcarbamoyl-3-deoxy-3-(N,N'-dicyclohexylureido)-6-O-methyl-1,2-O-(2,2,2-trichloroethylidene)-chiro-inositol were deprotected with boiling 57% aq hydrogen iodide. Ether, urethane and ethylidene acetal functions were simultaneously cleaved by the reagent, whereas the trichloroethylidene groups were still intact or were only removed in small quantities. Especially, the urea function of D-5-O-benzyl-4-O-cyclohexylcarbamoyl-3-deoxy-3-(N,N'-dicyclohexylureido)-6-O-methyl-1,2-O-(2,2,2-trichloroethylidene)-chiro-inositol was decomposed to a cyclohexylamino group. The hydrodechlorination of D-1-O-cyclohexylcarbamoyl-2-deoxy-2-fluoro-3-O-methyl-5,6-O-[(R/S)-2,2,2-trichloroethylidene]-chiro-inositol using Raney-Nickel yielded a mixture of the corresponding 5,6-O-ethylidene- and 5,6-O-chloroethylidene derivatives. The three synthetic steps-hydrodehalogenation, HI-deprotection and peracylation- were combined without purification of the intermediates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2004.11.031 | DOI Listing |
ACS Omega
April 2024
School of Biology, Food and Environment, Hefei University, Hefei 230601, China.
Lithium iodide is commonly used in the production of batteries and drugs. Currently, the neutralization method is the primary means of producing lithium iodide. This method involves using hydriodic acid as a raw material, adding lithium carbonate or lithium hydroxide, and obtaining lithium iodide through evaporation and concentration.
View Article and Find Full Text PDFSmall
July 2019
Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea.
The antimicrobial properties of graphene-based membranes such as single-layer graphene oxide (GO) and modified graphene oxide (rGO) on top of cellulose ester membrane are reported in this study. rGO membranes are made from GO by hydriodic acid (HI) vapor treatment. The antibacterial properties are tested after 3 h contact time with selected model bacteria.
View Article and Find Full Text PDFOwing to the hydrophobic property and heat-labile of flexible substances, it is difficult to prepare graphene transparent conductive films (TCFs) on flexible substrate in a direct and effective way. Here we prepared a good dispersion of water/graphene oxide (GO)/ethanol, and the fabrication of graphene TCFs on flexible poly carbonate (PC) substrate was made by spray deposition of water/GO/ethanol, followed by the reduction of hydriodic acid (HI) fuming method. It can be found that when ethanol was added to GO solution, the drying dynamics of the spraying solvent increased and the problem of wetting property of GO dispersion on the PC could be effectively resolved.
View Article and Find Full Text PDFJ Phys Chem B
April 2005
Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
The recent demonstration of enhanced surface anion concentrations for aqueous electrolyte solutions strongly contrasts current textbook descriptions. Small cations are still expected to be repelled from the surface, but recent simulations predict that hydronium (H3O+) cations are instead preferentially adsorbed at the interface. Here we describe a comparative second harmonic generation (SHG) study of aqueous solutions of hydriodic acid (HI) and alkali iodides (NaI and KI), which establish lower limits of 55% and 34% larger surface iodide concentrations for HI solutions relative to NaI and KI solutions, respectively.
View Article and Find Full Text PDFCarbohydr Res
March 2005
Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, D-18059 Rostock, Germany.
l-1-Deoxy-1-fluoro-6-O-methyl-myo-inositol was epimerized by chloral/DCC in boiling 1,2-dichloroethane yielding D-1-O-cyclohexylcarbamoyl-2-deoxy-2-fluoro-3-O-methyl-5,6-O-[(R/S)-2,2,2-trichloroethylidene]-chiro-inositol. The latter and l-4-O-benzyl-3-O-cyclohexylcarbamoyl-5-O-methyl-1,2-O-(2,2,2-trichloroethylidene)-muco-inositol, l-4-O-benzyl-3-O-cyclohexylcarbamoyl-1,2-O-ethylidene-5-O-methyl-muco-inositol, d-1-O-cyclohexylcarbamoyl-2-deoxy-5,6-O-ethylidene-2-fluoro-3-O-methyl-chiro-inositol, as well as D-5-O-benzyl-4-O-cyclohexylcarbamoyl-3-deoxy-3-(N,N'-dicyclohexylureido)-6-O-methyl-1,2-O-(2,2,2-trichloroethylidene)-chiro-inositol were deprotected with boiling 57% aq hydrogen iodide. Ether, urethane and ethylidene acetal functions were simultaneously cleaved by the reagent, whereas the trichloroethylidene groups were still intact or were only removed in small quantities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!