AI Article Synopsis

Article Abstract

The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 angstroms crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket (approximately 1600 angstroms3), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed to reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2005.02.002DOI Listing

Publication Analysis

Top Keywords

orphan nuclear
8
nuclear receptor
8
receptor steroidogenic
8
transcriptional activity
8
sf-1
7
crystallographic identification
4
identification functional
4
functional characterization
4
characterization phospholipids
4
phospholipids ligands
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!