In August, more than 350 conferees from 24 countries attended the ASM Conference on the New Phage Biology, in Key Biscayne, Florida. This meeting, also called the Phage Summit, was the first major international gathering in decades devoted exclusively to phage biology. What emerged from the 5 days of the Summit was a clear perspective on the explosive resurgence of interest in all aspects of bacteriophage biology. The classic phage systems like lambda and T4, reinvigorated by structural biology, bioinformatics and new molecular and cell biology tools, remain model systems of unequalled power and facility for studying fundamental biological issues. In addition, the New Phage Biology is also populated by basic and applied scientists focused on ecology, evolution, nanotechnology, bacterial pathogenesis and phage-based immunologics, therapeutics and diagnostics, resulting in a heightened interest in bacteriophages per se, rather than as a model system. Besides constituting another landmark in the long history of a field begun by d'Herelle and Twort during the early 20th century, the Summit provided a unique venue for establishment of new interactive networks for collaborative efforts between scientists of many different backgrounds, interests and expertise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2005.04509.x | DOI Listing |
Drugs
January 2025
Bruce Rappaport Faculty of Medicine, Technion-Israel institute of technology, Haifa, Israel.
The human microbiome exerts profound influence over various biological processes within the body. Unlike many host determinants, it represents a readily accessible target for manipulation to promote health benefits. However, existing commercial microbiome-directed products often exhibit low efficacy.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
Vibrio parahaemolyticus is pathogenic to both humans and marine animals. Antimicrobial-resistant (AMR) bacteria have been reported to cause mortalities in shrimp, with phage therapy presenting an alternative and eco-friendly biocontrol strategy for controlling bacterial diseases. Therefore, this study aimed to isolate and characterize phages for their applicability in lysing Vibrio parahaemolyticus.
View Article and Find Full Text PDFTrends Microbiol
January 2025
Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, UK. Electronic address:
The plasmid-mediated transfer of antibiotic resistance genes (ARGs) in complex microbiomes presents a significant global health challenge. This review examines recent technological advancements that have enabled us to move beyond the limitations of culture-dependent detection of conjugation and have enhanced our ability to track and understand the movement of ARGs in real-world scenarios. We critically assess the applications of single-cell sequencing, fluorescence-based techniques and advanced high-throughput chromatin conformation capture (Hi-C) approaches in elucidating plasmid-host interactions at unprecedented resolution.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China. Electronic address:
Emerging variants of SARS-CoV-2 pose great technological and regulatory challenges to vaccine manufacturing, especially in downstream processing. To address this dilemma, the development of broad-spectrum affinity chromatography for the purification of wild-type SARS-CoV-2 and its variants is crucial. We propose a comprehensive strategy to achieve this goal via the identification of high-affinity peptides by affinity selection of phage display and next-generation sequencing (NGS) and the evaluation of chromatographic performance.
View Article and Find Full Text PDFPLoS Biol
January 2025
Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!