Signal transduction pathways and transcription factors as therapeutic targets in inflammatory disease: towards innovative antirheumatic therapy.

Curr Pharm Des

Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, 1100DD Amsterdam, The Netherlands.

Published: October 2005

Many chronic inflammatory diseases are associated with deregulated intracellular signal transduction pathways. Resultant pathogenic interactions between immune and stromal cells lead to changes in cell activation, proliferation, migratory capacity, and cell survival that all contribute to inflammation. Increasing efforts are now being made in the design of novel therapeutic compounds to interfere with signaling pathways in inflammatory diseases like rheumatoid arthritis (RA). In this review we will outline the major signal transduction pathways involved in the pathogenesis of RA. We will assess advances in targeting a number of key intracellular pathways, including nuclear factor-(kappa)B (NF-(kappa)B), mitogen-associated protein kinases (MAPKs), phosphoinositide 3-kinase (PI3K)/Akt, signal transducers and activators of transcription (STATs), and reactive oxygen species (ROS) production. Finally, we will discuss recently identified lead molecules and the progress of selected compounds towards becoming new drugs for the treatment of inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612053381918DOI Listing

Publication Analysis

Top Keywords

signal transduction
12
transduction pathways
12
inflammatory diseases
12
pathways
5
signal
4
pathways transcription
4
transcription factors
4
factors therapeutic
4
therapeutic targets
4
inflammatory
4

Similar Publications

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!