Chem Res Toxicol
Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, USA.
Published: February 2005
Terpene quinone methides have been isolated from natural resources and exhibit broad biological activities against bacteria, fungi, and tumor cells through the reactive quinone methide (QM) moiety. The biological potential of the oxidation of terpene QM precursors, however, has not been assessed even though Cu(2+)-induced oxidation of catechol shows detrimental effects on cells. In this study, a diterpenone catechol was investigated as a precursor of terpene QM under aqueous conditions in the presence of Cu2+. Direct QM formation was implied in the Cu(2+)-induced oxidation through the study of thiol addition using HPLC and ESI-MS analysis. In addition, oxidation of the initial QM adduct to a second-QM intermediate was observed. The direct QM oxidation pathway may be unique for diterpenone catechol in the Cu(2+)-induced oxidation and is an addition to the reported isomerization pathway of o-quinones to QMs. The DNA damage by the Cu(2+)-induced oxidation of diterpenone catechol was assessed on a short duplex DNA target. Both direct DNA cleavage and nucleobase oxidation were observed extensively by in situ-generated hydroxyl radicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx049703a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.