A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adenosine A1 receptors are involved in the modulation of the rhythmical respiration in neonatal rat brainstem slice in vitro. | LitMetric

This study was designed to investigate whether adenosine A1 receptors could modulate primary rhythmical respiration in mammals. Experiments were performed in in vitro brainstem slice preparations from neonatal rats. These preparations included the medial region of the nucleus retrofacialis (mNRF) with the hypoglossal nerve rootlets retained. The activity of the inspiration-related neurons (I neurons) in mNRF and respiratory rhythmical discharge activity (RRDA) of the hypoglossal nerve rootlets were simultaneously recorded by using microelectrodes and suction electrodes, respectively. Possible roles of adenosine A1 receptors in rhythmical respiration were investigated by administration of adenosine A1 receptor agonist R-phenylisopropyl-adenosine (R-PIA) and its specific antagonist 8-cyclopentyl-1,3- dipropylxanthine (DPCPX) into a modified Kreb's perfusion solution (MKS). DPCPX induced a significant decrease in the expiratory time and the respiratory cycles, and an increase in the discharge frequency and peak frequency of I neurons in the middle phase of inspiration. However, R-PIA significantly decreased the inspiratory time and integral amplitude as well as prolonged respiratory cycle. Moreover, the discharge frequency and the peak frequency of I neurons were decreased in the middle phase of inspiration, but not in the initial and terminal phases. The effect of R-PIA on rhythmical discharges could be partially reversed by additional application of DPCPX. These results indicate that adenosine A1-receptors are possibly involved in the modulation of rhythmical respiration through the inhibitory synaptic input from I neurons.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rhythmical respiration
16
adenosine receptors
12
involved modulation
8
modulation rhythmical
8
brainstem slice
8
hypoglossal nerve
8
nerve rootlets
8
discharge frequency
8
frequency peak
8
peak frequency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!