Histone phosphorylation influences transcription, chromosome condensation, DNA repair and apoptosis. Previously, we showed that histone H3 Ser10 phosphorylation (pSer10) by the yeast Snf1 kinase regulates INO1 gene activation in part via Gcn5/SAGA complex-mediated Lys14 acetylation (acLys14). How such chromatin modification patterns develop is largely unexplored. Here we examine the mechanisms surrounding pSer10 at INO1, and at GAL1, which herein is identified as a new regulatory target of Snf1/pSer10. Snf1 behaves as a classic coactivator in its recruitment by DNA-bound activators, and in its role in modifying histones and recruiting TATA-binding protein (TBP). However, one important difference in Snf1 function in vivo at these promoters is that SAGA recruitment at INO1 requires histone phosphorylation via Snf1, whereas at GAL1, SAGA recruitment is independent of histone phosphorylation. In addition, the GAL1 activator physically interacts with both Snf1 and SAGA, whereas the INO1 activator interacts only with Snf1. Thus, at INO1, pSer10's role in recruiting SAGA may substitute for recruitment by DNA-bound activator. Our results emphasize that histone modifications share general functions between promoters, but also acquire distinct roles tailored for promoter-specific requirements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC554127PMC
http://dx.doi.org/10.1038/sj.emboj.7600577DOI Listing

Publication Analysis

Top Keywords

histone phosphorylation
16
recruitment dna-bound
8
saga recruitment
8
interacts snf1
8
histone
6
snf1
6
recruitment
5
ino1
5
phosphorylation promote
4
promote tbp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!