Grid enabled remote visualization of medical datasets.

Stud Health Technol Inform

Cardiff School of Computer Science, Cardiff University, Queen's Buildings, 5 The Parade, Roath, Cardiff CF24 3AA, United Kingdom.

Published: August 2005

We present an architecture for remote visualization of datasets over the Grid. This permits an implementation-agnostic approach, where different systems can be discovered, reserved and orchestrated without being concerned about specific hardware configurations. We illustrate the utility of our approach to deliver high-quality interactive visualizations of medical datasets (circa 1 million triangles) to physically remote users, whose local physical resources would be otherwise overwhelmed. Our architecture extends to a full collaborative, resource-aware environment, whilst our presentation details our first proof-of-concept implementation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

remote visualization
8
medical datasets
8
grid enabled
4
enabled remote
4
visualization medical
4
datasets architecture
4
architecture remote
4
visualization datasets
4
datasets grid
4
grid permits
4

Similar Publications

Entity-enhanced BERT for medical specialty prediction based on clinical questionnaire data.

PLoS One

January 2025

School of Industrial and Management Engineering, Korea University, Seongbuk-gu, Seoul, Republic of Korea.

A medical specialty prediction system for remote diagnosis can reduce the unexpected costs incurred by first-visit patients who visit the wrong hospital department for their symptoms. To develop medical specialty prediction systems, several researchers have explored clinical predictive models using real medical text data. Medical text data include large amounts of information regarding patients, which increases the sequence length.

View Article and Find Full Text PDF

Remote sensing images often suffer from the degradation effects of atmospheric haze, which can significantly impair the quality and utility of the acquired data. A novel dehazing method leveraging generative adversarial networks is proposed to address this challenge. It integrates a generator network, designed to enhance the clarity and detail of hazy images, with a discriminator network that distinguishes between dehazed and real clear images.

View Article and Find Full Text PDF

The proliferation of cyanobacteria has become a significant water management challenge due to the increasing eutrophication of water supply reservoirs. Cyanobacterial blooms thrive on elevated nutrient concentrations and form extensive green mats, disrupting the local ecosystem. Furthermore, many cyanobacterial species can produce toxins that are lethal to vertebrates called cyanotoxins.

View Article and Find Full Text PDF

Microplastic and microfiber contamination in the Tiber River, Italy: Insights into their presence and chemical differentiation.

Mar Pollut Bull

January 2025

Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; National Laboratory for Water Sciences and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H1113 Budapest, Hungary. Electronic address:

Microplastics (MPs) are an emerging environmental concern, but studies on these contaminants, particularly in river ecosystems, remain scarce. Research has indicated that MPs in the environment are predominantly microfibers (MFs); however, a few studies suggest that the MFs encountered are chiefly of natural origin. In this study, we aimed to improve the understanding of MP/MFs (both plastic and natural), among microparticle (solid particles >10 μm to <5000 μm; mainly of plastic as well as natural origin) loads in the Tiber River, Italy, by analyzing the physicochemical properties of surface water and assessing the abundance and characteristics of MPs-MFs at three sites: Ponte Grillo, Aniene, and Magliana, along a 60 km stretch.

View Article and Find Full Text PDF

Programmable scanning diffuse speckle contrast imaging of cerebral blood flow.

Neurophotonics

January 2025

University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States.

Significance: Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside.

Aim: We aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!