Wild-type human chorionic gonadotropin (hCG) has been used as a contraceptive vaccine. However, extensive sequence homology with LH elicits production of cross-reactive antibodies. Substitution of arginine(68) of the beta-subunit (hCG(beta)) with glutamic acid (R68E) profoundly reduces the cross-reactivity while refocusing the immune response to the hCG(beta)-specific C-terminal peptide (CTP). To investigate the molecular basis for this change in epitope usage, we immunized mice with a plasmid encoding a truncated hCG(beta)-R68E chain lacking the CTP. The animals produced LH-cross-reactive antibodies, suggesting that the refocused immunogenicity of R68E is a consequence of epitope masking by a novel disposition of the CTP in the mutant rather than a structural change in the cross-reactive epitope region. This explanation was strongly supported by surface plasmon resonance analysis using a panel of anti-hCG(beta)-specific and anti-hCG(beta)/LH cross-reactive monoclonal antibodies (mAbs). Whereas the binding of the LH cross-reactive mAbs to hCG(beta)-R68E was eliminated, mAbs reacting with hCG(beta)-specific epitopes bound to hCG(beta) and hCG(beta)-R68E with identical affinities. In a separate series of experiments, we observed that LH cross-reactive epitopes were silent after immunization with a plasmid encoding a membrane form of hCG(beta)-R68E, as previously observed with the soluble mutant protein itself. In contrast, the plasmid encoding the soluble secreted form of hCG(beta)-R68E evoked LH cross-reactive antibodies, albeit of relatively low titer, suggesting that the handling and processing of the proteins produced by the two constructs differed.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2004-0109DOI Listing

Publication Analysis

Top Keywords

plasmid encoding
12
human chorionic
8
glutamic acid
8
c-terminal peptide
8
cross-reactive antibodies
8
form hcgbeta-r68e
8
cross-reactive
6
hcgbeta-r68e
5
chorionic gonadotropin-beta
4
gonadotropin-beta arginine68
4

Similar Publications

Application of the SpCas9 inhibitor BRD0539 for CRISPR/Cas9-based genetic tools in .

Biosci Microbiota Food Health

September 2024

Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .

View Article and Find Full Text PDF

Methionine-driven methylation modification overcomes plasmid-mediated high-level tigecycline resistance.

Nat Commun

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.

Tigecycline is a last-resort antibiotic to treat complicated infections caused by multidrug-resistant pathogens, while the emergence of plasmid-mediated tet(X) family severely compromises its clinical efficacy. Novel antimicrobial strategies not limited to new antibiotics in pharmaceutical pipeline are urgently needed. Herein, we reveal the metabolic disparities between tet(X)-negative and -positive E.

View Article and Find Full Text PDF

The multi-host pathogen Rhodococcus equi is a parasite of macrophages preventing maturation of the phagolysosome, thus creating a hospitable environment supporting intracellular growth. Virulent R. equi isolated from foals, pigs and cattle harbor a host-specific virulence plasmid, pVAPA, pVAPB and pVAPN respectively, which encode a family of 17 Vap proteins belonging to seven monophyletic clades.

View Article and Find Full Text PDF

Molecular Characterization of Gene Encoding Outer Membrane Protein in Pathogenic Serovars in Iran.

J Trop Med

December 2024

Department of Microbiology, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran.

The protein is highly conserved among pathogenic serovars and it is expressed during both acute and chronic infections. The aim of this study was to clone and sequence of the protein-encoding gene of serovars. In this study, 23 pathogenic serovars and two nonpathogenic serovars were used.

View Article and Find Full Text PDF

Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi.

Fungal Genet Biol

January 2025

Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland. Electronic address:

Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!