Ionotropic and metabotropic glutamate receptors mediate and modulate retinocollicular transmission. The Royal College of Surgeons (RCS) dystrophic strain of rats suffers from a progressive retinal degeneration with age and hence loss of visual function. We investigated whether this loss of function is accompanied by functional changes in a central target of retinal axons, the superficial superior colliculus (SSC). Field potential recordings were made in SSC slices from RCS rats aged either 4-7 weeks or 33-52 weeks. Blockade of GABAergic transmission revealed a field EPSP in response to optic tract stimulation which was sensitive to the NMDA antagonist AP5. In normal non-dystrophic rats the contribution of NMDA receptors to the fEPSP declined with age, whereas in dystrophic animals no such decline was seen. As mGluR8 may be located on terminals of retinal axons, we also assessed the function of this receptor. The mGluR8 agonist DCPG reduced fEPSPs in normal and dystrophic rats in both age groups to a similar extent, although the effect of DCPG declined with age. These findings indicate that the contribution of NMDA receptors to retinocollicular transmission declines with age in normal rats, but that such a decline is not seen in dystrophic rats which have severely reduced visual function. As NMDA receptors are associated with neural plasticity, it may be that this finding represents an increased residual potential for plasticity in dystrophic rats which may be functionally important.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2004.07.004 | DOI Listing |
Neurogenetics
January 2025
Department of Surgery, Surgical Research Section, Hamad Medical Corporation, Doha, Qatar.
Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Objectives: Traumatic brain injury (TBI) is a significant cause of mortality and disability worldwide. TBI has been associated with factors such as oxidative stress, neuroinflammation, and apoptosis, which are believed to be mediated by the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Two NMDA receptor antagonists, ketamine and memantine, have shown potential in mitigating the pathophysiological effects of TBI.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2100, Denmark.
NMDA receptor ligands have therapeutic potential in neurological and psychiatric disorders. We designed ()-3-(5-thienyl)carboxamido-2-aminopropanoic acid derivatives with nanomolar agonist potencies at NMDA receptor subtypes (GluN12/A-D). These compounds are superagonists at GluN1/2C compared to glycine and partial to full agonists at GluN1/2A and GluN1/2D but display functional antagonism at GluN1/2B due to low agonist efficacy.
View Article and Find Full Text PDFJ Xenobiot
January 2025
School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8504, Tokushima, Japan. Electronic address:
The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABA receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!