We report a novel effect of dehydroepiandrosterone (DHEA) on human granulocyte differentiation: DHEA enhances the all-trans-retinoic acid (ATRA)-induced differentiation of promyelocytic NB4 cells. DHEA (100 microM) significantly augmented the respiratory burst activity of NB4 cells treated with 1 nM ATRA, whereas DHEA alone did not induce respiratory burst activity. The protein and message expressions of p67phox, the gene for the dose-limiting component of phagocyte NADPH oxidase, were significantly enhanced by the coexistence of DHEA and ATRA. The protein expression of p47phox, another component of phagocyte NADPH oxidase, was also up-regulated by DHEA and ATRA. Moreover, the ATRA-induced increment of CCAAT/enhancer-binding protein beta (C/EBPbeta) and the reciprocal reduction in C/EBPUalpha expression were also potentiated by DHEA. In contrast, the expression of PU.1, a transcription factor reportedly involved in the basal expression of p67phox in monocytic cells, was only slightly up-regulated by DHEA and ATRA. Interestingly, DHEA sulfate (DHEAS), the sulfate ester of DHEA that exists in peripheral blood at a concentration approximately 3 orders of magnitude larger than that of DHEA, did not stimulate the ATRA-induced differentiation of NB4 cells. Thus, DHEA, but not DHEAS, plays important roles in synergy with ATRA during granulocyte differentiation of human promyelocytic NB4 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1532/ijh97.04117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!