AI Article Synopsis

Article Abstract

The purpose of this study was to test whether transitin, the avian homologue of nestin, is expressed by retinal progenitors in the developing and postnatal chicken. Because nestin has been widely used as a cell-distinguishing marker of neural progenitors in the mammalian nervous system, we expected to find transitin expressed specifically by the neural progenitors of the retina. In early stages of development, transitin is expressed by neural progenitors in the retina and by cells in the developing ciliary body. During later stages of development, transitin expression persists in differentiating Müller glia but is down-regulated by these cells as maturation proceeds. In the postnatal chick, transitin expression is restricted to neural progenitors at the peripheral edge of the retina. We found that the expression of transitin in mature Müller glia was induced by intraocular injections of insulin and fibroblast growth factor-2 (FGF2) but not by ciliary neurotrophic factor. In response to insulin and FGF2, the expression of transitin was induced in the nonpigmented epithelium (NPE) of the ciliary body. In the postnatal retina, acute retinal damage transiently induces transitin expression in Müller glia. We propose that the expression of transitin by retinal Müller glia and NPE cells in the postnatal animal represents a state of de-differentiation and a step toward becoming neurogenic progenitor cells. Taken together, our findings indicate that transitin is expressed by neural progenitors in the embryonic and postnatal chicken retina. However, transitin is not exclusively expressed by neural progenitors and is also expressed by non-neurogenic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20406DOI Listing

Publication Analysis

Top Keywords

neural progenitors
28
expressed neural
20
müller glia
20
transitin
12
transitin expressed
12
transitin expression
12
expression transitin
12
progenitors
8
chicken retina
8
postnatal chicken
8

Similar Publications

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Neural Stem/Progenitor Cell Therapy in Patients and Animals with Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-analysis.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative malady that causes progressive degeneration and loss of motor neuron function in the brain and spinal cord, eventually resulting in muscular atrophy, paralysis, and death. Neural stem/progenitor cell (NSPC) transplantation can improve bodily function in animals and delay disease progression in patients with ALS. This paper summarizes and analyzes the efficacy and safety of neural stem/progenitor cell (NSPC) transplantation as a treatment for ALS, aiming to improve function and delay disease progression in patients.

View Article and Find Full Text PDF

The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!