1. Chemical modification by o-iodosobenzoate of soluble chloroplast coupling factor 1 (CF1) during heat activation resulted in inhibition of its Ca-ATPase activity and in the formation of two new intrapeptide disulfide bridges as suggested by: (a) the disappearance of three out of four accessible thiol groups, two from gamma and one from a beta subunit as a consequence of CF1 modification by o-iodosobenzoate; (b) the total free sulphydryl groups of CF1 were reduced from 8 to 4 after modification of CF1 by o-iodosobenzoate. Two groups disappeared from beta and two from gamma subunits; (c) a second heating step of CF1 in the presence of 10 mM dithioerythritol reversed the inhibition of the ATPase and reduced both the newly formed disulfide bridges and those present in native CF1. 2. Modification of chloroplasts in the light with o-iodosobenzoate resulted in the inhibition of photophosphorylation and ATPase. CF1 isolated and purified from these chloroplasts had its Ca-ATPase activity inhibited and two new disulfide bridges. The total number of free sulphydryl groups was reduced from 8 to 4 and three accessible groups disappeared from beta and gamma subunits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2728(79)90018-5DOI Listing

Publication Analysis

Top Keywords

disulfide bridges
16
sulphydryl groups
12
coupling factor
8
modification o-iodosobenzoate
8
ca-atpase activity
8
three accessible
8
cf1 modification
8
free sulphydryl
8
groups disappeared
8
disappeared beta
8

Similar Publications

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

Auranofin induces disulfide bond-mimicking S-Au adducts in protein thiol pairs.

J Biol Chem

January 2025

Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany. Electronic address:

Auranofin is an inhibitor of human thioredoxin reductase, clinically used in the treatment of rheumatoid arthritis. More recently, it has been shown to possess strong antibacterial activity. Despite the structural dissimilarity and the independent evolutionary origins of human thioredoxin reductase and its bacterial counterpart (TrxB), inhibition of bacterial thioredoxin reductase is often suggested to be a major factor in auranofin's antibacterial mode of action.

View Article and Find Full Text PDF

Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy.

Nat Commun

January 2025

Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.

The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding.

View Article and Find Full Text PDF

Heme is involved in many critical processes in pathogenic bacteria as iron acquisition by these microorganisms is achieved by either direct uptake of heme or use of heme-binding proteins called hemophores. Exploring the underlying mechanisms on a molecular level can open new avenues in understanding the host-pathogen interactions. Any imbalance of the heme concentration has a direct impact on the bacterial growth and survival.

View Article and Find Full Text PDF

Structure-based design of covalent nanobody binders for a thermostable green fluorescence protein.

Acta Biochim Biophys Sin (Shanghai)

December 2024

Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

The use of green fluorescence protein (GFP) has advanced numerous areas of life sciences. An ultra-thermostable GFP (TGP), engineered from a coral GFP, offers potential advantages over traditional jellyfish-derived GFP because of its high stability. However, owing to its later discovery, TGP lacks the extensive toolsets available for GFP, such as heavy chain-only antibody binders known as nanobodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!