The suprachiasmatic nucleus (SCN) receives a dense serotonergic innervation that modulates photic input to the SCN via serotonin 1B (5-HT1B) presynaptic receptors on retinal glutamatergic terminals. However, the majority of 5-HT1B binding sites in the SCN are located on nonretinal terminals and most axonal terminals in the SCN are GABAergic. We therefore tested the hypothesis that 5-HT1B receptors might also be located on SCN GABAergic terminals by examining the effects of the highly selective 5-HT1B receptor agonist CP-93,129 on SCN miniature inhibitory postsynaptic currents (mIPSCs). Whole cell patch-clamp recordings of mIPSCs were obtained from rat and mouse SCN neurons in hypothalamic slices. Using CsCl-containing microelectrodes with QX314, we isolated mPSCs that were sensitive to the GABAA receptor antagonist, bicuculline. Bath application of CP-93,129 (1 microM) decreased the frequency of mIPSCs by an average of 22% (n = 7) in rat SCN neurons and by an average of 30% (n = 8) in mouse SCN neurons with no clear effect on mIPSC amplitude. In mice lacking functional 5-HT1B receptors, CP-93,129 (1 microM) had no clear effect on the frequency or the amplitude of mIPSCs recorded in any of the cells tested (n = 4). The decrease in the frequency of mIPSCs of SCN neurons produced by the selective 5-HT1B receptor agonist CP-93,129 is consistent with the interpretation that 5-HT1B receptors are located on GABA terminals in the SCN and that 5-HT inhibits GABA release via a 5-HT1B presynaptic receptor-mediated mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00770.2004 | DOI Listing |
Peptides
January 2025
Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also known as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
Dexmedetomidine (DexM), a highly selective α-adrenoceptor agonist, significantly reduces postoperative adverse effects, including sleep and circadian rhythm disruptions. Vasoactive intestinal peptide neurons in the suprachiasmatic nucleus (SCN) regulate the synchronization of circadian rhythms with the external environment in mammals. We investigate the effects of DexM on sleep and circadian rhythms, as well as the underlying mechanisms.
View Article and Find Full Text PDFJ Biol Rhythms
December 2024
Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
In both diurnal and nocturnal species, the neurons in the suprachiasmatic nucleus (SCN) generate a daily pattern in which the impulse frequency peaks at midday and is lowest during the night. This pattern, common to both day-active and night-active species, has led to the long-standing notion that their functional difference relies merely on a sign reversal in SCN output. However, recent evidence shows that the response of the SCN to the animal's physical activity is opposite in nocturnal and diurnal animals.
View Article and Find Full Text PDFCell Metab
December 2024
Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA. Electronic address:
When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous in vivo fiber-photometry recordings in mice.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, Washington University in Saint Louis, USA.
Circadian rhythms in mammals arise from the spatiotemporal synchronization of ~20,000 neuronal clocks in the Suprachiasmatic Nucleus (SCN). While anatomical, molecular, and genetic approaches have revealed diverse cell types and signaling mechanisms, the network wiring that enables SCN cells to communicate and synchronize remains unclear. To overcome the challenges of revealing functional connectivity from fixed tissue, we developed MITE (Mutual Information & Transfer Entropy), an information theory approach that infers directed cell-cell connections with high fidelity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!