A sensorimotor control task often requires an accurate estimation of the timing of the arrival of an external target (e.g., when hitting a pitched ball). Conventional studies of human timing processes have ignored the stochastic features of target timing: e.g., the speed of the pitched ball is not generally constant, but is variable. Interestingly, based on Bayesian theory, it has been recently shown that the human sensorimotor system achieves the optimal estimation by integrating sensory information with prior knowledge of the probabilistic structure of the target variation. In this study, we tested whether Bayesian integration is also implemented while performing a coincidence-timing type of sensorimotor task by manipulating the trial-by-trial variability (i.e., the prior distribution) of the target timing. As a result, within several hundred trials of learning, subjects were able to generate systematic timing behavior according to the width of the prior distribution, as predicted by the optimal Bayesian model. Considering the previous studies showing that the human sensorimotor system uses Bayesian integration in spacing and force-grading tasks, our result indicates that Bayesian integration is fundamental to all aspects of human sensorimotor control. Moreover, it was noteworthy that the subjects could adjust their behavior both when the prior distribution was switched from wide to narrow and vice versa, although the adjustment was slower in the former case. Based on a comparison with observations in a previous study, we discuss the flexibility and adaptability of Bayesian sensorimotor learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.01168.2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!