Participation of dorsal raphe nucleus in the behavioral alteration observed after discontinuation of chronic diazepam administration: possible neural circuitry involved.

Synapse

Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.

Published: May 2005

Previous findings from our laboratory have demonstrated a positive correlation between the development of tolerance to diazepam (DZ) 5 mg/kg/day over 4 days, and increased hippocampal synaptic plasticity. It seems likely that a similar plastic phenomenon may occur on hippocampal formation after chronic (18 days) DZ administration. We postulate hippocampal long-term potentiation (LTP) underlying substrate to the behavioral alteration observed after chronic DZ administration. In the present study, we investigated the involvement of the serotonergic (5-HT) system in the possible neural circuitry recruited during DZ withdrawal and in the increased hippocampal synaptic plasticity associated with the discontinuation of chronic DZ administration. The results of the current research demonstrate an increased neuronal activity in the dorsal raphe nucleus (DRN) during withdrawal. Previous MK-801 administration impairs the development of anxiety signs observed during withdrawal and the concomitant increased electrical activity on 5-HT neurons on DRN. These results are discussed in terms of the participation of 5-HT system in the modulation of hippocampal plasticity developed on DZ withdrawal.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.20118DOI Listing

Publication Analysis

Top Keywords

dorsal raphe
8
raphe nucleus
8
behavioral alteration
8
alteration observed
8
discontinuation chronic
8
neural circuitry
8
increased hippocampal
8
hippocampal synaptic
8
synaptic plasticity
8
chronic administration
8

Similar Publications

Developing Topics.

Alzheimers Dement

December 2024

Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, MA, USA.

Background: The neuromodulatory subcortical systems are among the earliest brain regions to accrue pathology in Alzheimer's disease (AD), contributing to cognitive and non-cognitive symptoms. Monoaminergic nuclei, such as the dorsal raphe (DRn), modulate mood, cognition, and arousal. Their pathological perturbation is proposed to induce initial hyperexcitability followed by decreased activity, which may therefore be associated with the neuropsychiatric and cognitive symptoms of preclinical AD.

View Article and Find Full Text PDF

Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.

View Article and Find Full Text PDF

Dysregulation of the dopamine (DA) system is a hallmark of substance use disorders, including alcohol use disorder (AUD). Of the DA receptor subtypes, the DA D2 receptors (D2Rs) play a key role in the reinforcing effects of alcohol. D2Rs are expressed in numerous brain regions associated with the regulation of appetitive behaviors.

View Article and Find Full Text PDF

Infant mice fed soy-based formulas exhibit alterations in anxiety-like behaviours and the 5-HT system.

Toxicology

December 2024

Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy. Electronic address:

Genistein (GEN) is a phytoestrogen with oestrogen-like activity found in many plants. Classified as an endocrine disruptor, GEN is potentially hazardous, particularly during developmental stages. It induces alterations in anxious behaviour, fertility, and energy metabolism, alongside modifications in specific brain circuits.

View Article and Find Full Text PDF

Effect of electroacupuncture on metabolic alterations in the hippocampus and dorsal raphe nucleus of Wistar Kyoto rats.

Brain Res

December 2024

Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China. Electronic address:

Depression is underpinned by a complex pathogenesis that involves the hippocampus and dorsal raphe nucleus (DRN) of the central nervous system. Although electroacupuncture (EA) is proven to be safe and effective for alleviating depression symptoms and causes minimal side effects, its underlying therapeutic mechanism remains unclear. In this study, we performed targeted metabolomics to identify metabolite alterations in the hippocampus and DRN of Wistar Kyoto (WKY) rats and elucidate the role and potential mechanism of action of EA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!