The mRNA nuclear export factor Hpr1 is regulated by Rsp5-mediated ubiquitylation.

J Biol Chem

Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Universités Paris VI and VII, 75251 Paris Cedex 05, France.

Published: April 2005

Ubiquitin conjugation and in particular two distinct HECT ubiquitin ligases, Rsp5p and Tom1p, have been shown to participate in the regulation of mRNA export in Saccharomyces cerevisiae. The identification of the ubiquitin ligase substrates represents a major challenge in understanding how this modification may modulate mRNA export. Here, we identified Hpr1p, a member of the THO/TREX (transcription/export) complex that couples mRNA transcription to nuclear export as a target of the ubiquitin-proteasome pathway. Hpr1p degradation is enhanced at high temperature and appears linked to on-going RNA-polymeraseII-mediated transcription. Interestingly, the stability of the other THO complex components is not affected under these conditions indicating that Hpr1p turnover could control the formation of the THO/TREX complex and consequently mRNA export. Using in vivo and in vitro approaches we demonstrate that Rsp5p is responsible for the ubiquitylation of Hpr1p that also involves the ubiquitin-conjugating enzyme Ubc4p. Thus, Hpr1p represents the first nuclear export factor regulated by ubiquitylation, strongly suggesting that this post-translational modification participates in the coordination of transcription and mRNA export processes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.C500040200DOI Listing

Publication Analysis

Top Keywords

mrna export
16
nuclear export
12
export factor
8
export
7
mrna
6
hpr1p
5
mrna nuclear
4
factor hpr1
4
hpr1 regulated
4
regulated rsp5-mediated
4

Similar Publications

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

The kingdom of fungi contains highly diverse species. However, fundamental processes sustaining life such as RNA metabolism are much less comparatively studied in Fungi than in other kingdoms. A key factor in the regulation of mRNA expression is the cap-binding protein eIF4E, which plays roles in mRNA nuclear export, storage and translation.

View Article and Find Full Text PDF

ENY2 is an evolutionarily conserved multifunctional protein and is a member of several complexes that regulate various stages of gene expression. ENY2 is a subunit of the TREX-2 complex, which is necessary for the export of bulk mRNA from the nucleus to the cytoplasm through the nuclear pores in many eukaryotes. The wide range of ENY2 functions suggests that it can also associate with other protein factors or complexes.

View Article and Find Full Text PDF

Nuclear pore proteins control nucleocytoplasmic transport; however, certain nucleoporins play regulatory roles in activities such as transcription and chromatin organization. The fission yeast basket nucleoporin Nup211 is implicated in mRNA export and is essential for cell viability. Nup211 preferentially associates with heterochromatin, however, it is unclear whether it plays a role in regulating transcription.

View Article and Find Full Text PDF

A number of studies have reported an association between phosphorus, red blood cell (RBC) production, and iron metabolism. However, it is difficult to distinguish whether the effect of phosphorus is direct or through the actions of FGF23, and it is not clear whether phosphorus is positively or negatively associated with RBC production. In the present study, we investigated the effects of a) increased phosphorus load and b) phosphorus deficiency on erythropoiesis and iron metabolism in association with FGF23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!