It has previously been reported that the murine macrophage cell line J774.1 and the human oral epithelial cell line KB undergo apoptosis as a result of Actinobacillus actinomycetemcomitans infection. Recent studies have demonstrated that apoptosis regulation is modulated by multiple phosphorylation of several different protein kinases, including the major subtypes of the mitogen-activated protein kinase (MAPK) family. The MAPK family promotes cell survival and/or proliferation in response to growth factor stimulation, or apoptosis in response to various stress stimuli. The primary objective of the present investigation was to clarify whether human immune cells undergo apoptosis following A. actinomycetemcomitans infection and, if so, to establish the involvement of the MAPK family. Human monocytic THP-1 cells were infected with A. actinomycetemcomitans in microtubes. Lactate dehydrogenase release into the culture supernatant and DNA fragmentation in the cells were monitored. DNA fragmentation was also identified by agarose gel electrophoresis. Cell death following A. actinomycetemcomitans infection occurred by apoptosis, shown by an increase in the proportion of fragmented DNA and the typical ladder pattern of DNA fragmentation indicative of apoptosis. Furthermore, p38 MAPK activity and tumour necrosis factor alpha (TNF-alpha) levels increased following A. actinomycetemcomitans infection. In contrast, cell death and TNF-alpha levels in infected cells decreased upon addition of a p38 inhibitor or an anti-TNF-alpha antibody. However, exogenous TNF-alpha could not induce apoptosis in uninfected THP-1 cells. Interestingly, p38 MAPK activity diminished in the presence of anti-TNF-alpha antibody. These findings indicated that A. actinomycetemcomitans infection induces apoptosis in THP-1 cells and that p38 MAPK activity is directly involved in apoptosis. TNF-alpha may play an indirect role in apoptosis via enhanced p38 MAPK activity. A. actinomycetemcomitans-induced apoptosis of human immune cells may be important in terms of initiation and progression of periodontal diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jmm.0.45693-0 | DOI Listing |
Microb Pathog
January 2025
Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil. Electronic address:
Peri-implantitis associated with dental implants shares characteristics with destructive periodontal diseases. Both conditions are multifactorial and strongly correlated with the presence of microorganisms surrounding the prostheses or natural dentition. This study aimed to evaluate the antimicrobial activity and toxicity of a mucoadhesive hydrogel functionalized with aminochalcone (HAM-15) against Aggregatibacter actinomycetemcomitans, Fusobacterium periodonticum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Candida albicans.
View Article and Find Full Text PDFPathogens
December 2024
College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
This review synthesizes the findings from 252 studies to explore the relationship between the oral pathogens associated with periodontitis, dental caries, and systemic diseases. Individuals with oral diseases, such as periodontitis, are between 1.7 and 7.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
December 2024
Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Chennai, India.
Background: Periodontitis is considered to be one of the major risk factors associated with cancers of the oral cavity. Periodontogenic pathogens such as and are the important pathogens associated with periodontitis. Chronic exposure to bacterial components induces changes in the nearby cells.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
December 2024
Faculty of Dentistry, University of Hong Kong, Hong Kong, China.
Background: A stable copper tetraamine fluoride (CTF) with low cytotoxicity has been developed for dental use.
Objective: To investigate the antimicrobial effects of CTF against common microbes associated with dental caries and periodontal disease.
Method: The minimum inhibitory concentrations (MIC) and minimum bactericidal/fungicidal concentrations (MBC/MFC) were used to evaluate the antimicrobial effects of CTF against eight common bacteria and one fungus associated with dental caries and periodontal disease.
Cells
November 2024
Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
CD38, a nicotinamide adenine dinucleotide (NAD) glycohydrolase, increases during infection or inflammation. Therefore, we aimed to evaluate the effects of a CD38 inhibitor (78c) on NAD levels, IL-1β, IL-6, TNF-α cytokine expressions, and osteoclastogenesis. The results show that treatment with 78c on murine BMMs dose-dependently reduced CD38, reversed the decline of NAD, and inhibited IL-1β, IL-6, and TNF-α pro-inflammatory cytokine levels induced by oral pathogen () or () or by advanced glycation end products (AGEs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!