This communication reports the results of a three-dimensional finite element (FE) model of stresses in a surgically altered femur and tibia. The model incorporated a novel approach in implementing orthotropic and inhomogeneous bone properties and non-uniform distributed loading. Cortical, cancellous, and subchondral bone of the femur and the tibia were modeled. Mechanical properties for the cortical and cancellous bone were mapped from published data characterizing the anisotropy and inhomogeneity of the bone properties. Mesh adequacy was determined using stress convergence and strain energy error convergence. Qualitatively, the results of the study compare well with experimental principal compressive strains from the literature. With respect to tunnel placement in anterior cruciate ligament reconstruction, the model predicted stress-shielding at the postero-lateral region of the tunnel wall, and increased stress at the postero-medial region of the tunnel wall. The stresses in the cancellous bone beneath the tunnel were, in general, lower than those above the tunnel. Prolonged stress shielding leads to bone resorption of the posterior tunnel wall leading to tunnel enlargement, and possible compromise of the ACL reconstruction. The stresses on the femoral cortex produced from a button-type fixation were noticeable for low levels of loading; the stress levels were very similar in models incorporating bone properties of patients aged 45 and 65. Repeated compression of the femoral cortex at these stress levels may cause microdamage to the cortex eventually resulting in fatigue failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2004.05.007 | DOI Listing |
J Appl Biomater Funct Mater
January 2025
Department of Neurosurgery, Neurocenter of South Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.
Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Division of Orthopaedic Surgery, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada. Electronic address:
Introduction: Primary glenohumeral arthritis is typically associated with glenoid retroversion and posterior bone loss. Glenoid component fixation remains a weak link in the survivorship of anatomical total shoulder arthroplasty, particularly in the B2 glenoid. The aim of this study was to compare biomechanical properties of two glenoid preparation techniques in a B2 glenoid bone loss model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!