Bovine pericardium (BP) is a source of natural biomaterials with a wide range of clinical applications. In the present work we studied the dynamic mechanical behavior of BP in native form and under specific enzymatic degradation with chondroitinase ABC extracted a 17% of the total glycosaminoglycans (GAGs). The GAGs content of native BP was composed mainly from hyaluronan, chondroitine sulfate and dermatan sulfate. Dynamic tensile mechanical testing of BP in the frequency range 0.1-20 Hz demonstrated its viscoelastic nature. The storage modulus was equal to 6.5 (native) and 5.5 (degraded) MPa initially, increased in the region nearby 1 Hz by about 15%. This was related with physical resonance mechanisms activated in this frequency region. The high modulus (modulus of the high linear phase of stress-strain) was equal to 14 (native) and 10 (degraded) MPa, dropped at high frequencies to 7 and 5 Mpa, respectively. The damping, expressed by the hysteresis, was equal to 20% of the loading energy, changed exponentially with the frequency to 30% at 20 Hz. It seemed that of the elastic mechanical parameters, the storage modulus and the high modulus were even slightly dropped as a result of degradation. As a final conclusion, there was evident that GAGs may play a non-negligible role in the dynamic mechanical behavior of BP and, probably in other soft tissue biomechanics. It is suggested that the GAGs content may be considered during the design and chemical modification of biomaterials based on BP and other soft tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2004.05.019 | DOI Listing |
J Mol Model
January 2025
Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan.
Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China.
Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).
View Article and Find Full Text PDFACS Nano
January 2025
Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China.
The neurological implications of micro- and nanoplastic exposure have recently come under scrutiny due to the environmental prevalence of these synthetic materials. Parkinson's disease (PD) is a major neurological disorder clinically characterized by intracellular Lewy-body inclusions and dopaminergic neuronal death. These pathological hallmarks of PD, according to Braak's hypothesis, are mediated by the afferent propagation of α synuclein (αS) via the enteric nervous system, or the so-called gut-brain axis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, United States.
Introduction: Accurate prediction of knee biomechanics during total knee replacement (TKR) surgery is crucial for optimal outcomes. This study investigates the application of machine learning (ML) techniques for real-time prediction of knee joint mechanics.
Methods: A validated finite element (FE) model of the lower limb was used to generate a dataset of knee joint kinematics, kinetics, and contact mechanics.
ACS Nano
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
Structured surfaces leverage interfacial energy for directional liquid manipulation without external power, showing tremendous potential in microfluidics, green energy and biomedical applications. While the interplay of interfacial energy between solid surfaces and liquids is crucial for liquid manipulation, a systematic understanding of how the balance in liquid-solid interfacial energy affects liquid behaviors remains lacking. Here, using the curvature-ratchet surface as a generic example, we reveal the complex directional liquid dynamics inherent in the subtle regulation of liquid-solid interfacial energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!