A Cu2N2 diamond core structure, {(PNP)CuI}2 (2), supported by a [PNP]- ligand (1) ([PNP]- = bis(2-(diisobutylphosphino)phenyl)amide) has been prepared. 2 is highly emissive at ambient temperature in both the solid and solution states and is characterized by a relatively long-lived excited state (tau > 10 mus) and an unusually high quantum yield (phi > 0.65). These observations are consistent with a low degree of structural reorganization between the ground state of 2 and its excited state *2, and also with a high degree of steric protection of the two copper centers of 2 afforded by the bulky [PNP]- ligand. An estimate for the excited-state reduction potential of *2 (ca. -3.2 V vs Fc+/Fc), and the availability of two well-separated and reversible ground-state redox processes, suggests that bimetallic copper systems of these types may be interesting candidates to consider for photochemically driving multielectron redox transformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja043092r | DOI Listing |
Chemphyschem
January 2025
Nanjing Tech University, College of Chemical Engineering, CHINA.
Recently, Beller and coworkers reported a study on the reversible hydrogenation of CO2 to formic acid using a Mn(I)-PN5P complex. In this paper, we performed DFT calculations to understand the mechanism for this reversible reaction occurring on the Mn-PN5P, Mn-PN3P, and Mn-PNP catalysts. Through investigating in detail two possible routes for CO2 hydrogenation to formic acid, we noticed that the production of formic acid is not thermodynamically favorable.
View Article and Find Full Text PDFACS Omega
December 2024
Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo CEP 12228-900, Brazil.
The five-coordinate complex [RuCl(PNP)] () was synthesized from the binuclear [RuCl(-cym)] with a PNP-type ligand (PNP = 3,6-di--butyl-1,8-bis(dipropylphosphino)methyl)-9-carbazole - (Cbzdiphos )H) in a toluene solution, within 20 h at 110 °C, producing a green solid, which was precipitated with a 1/1 mixture of - pentane/HMDSO. The complex was characterized by NMR-H, C, and P{H}, mass spectroscopy-LIFDI, FTIR, UV/vis spectroscopy, and cyclic voltammetry, as well as a description of the optimized structure by DFT calculation. The reactivity of was investigated in the presence of potassium triethylborohydride (KBEtH, in THF solution of 1.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342037, India.
An Earth-abundant Mn-PNP pincer complex-catalyzed terpenylation of cyclic and acyclic ketones and secondary alcohol 1-phenylethanol using isoprenoid derivatives prenol, nerol, phytol, solanesol, and E-farnesol as allyl surrogates is reported. The C-C coupling reactions are green and atom-economic, proceeding via dehydrogenation of alcohols following a hydrogen autotransfer methodology aided by metal-ligand cooperation.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
Neuropathic pain (NP) is often caused by diabetic neuropathy, chemotherapy, or spinal cord lesions and is associated with significant economic burden and poor quality of life. Sophisticated etiology and pathology recognized different pharmacologic interventions, and hitherto, the reported analgesic efficacy and safety of guideline-recommended drugs are not satisfactory. Overall, this article reviews the mechanism of αδ ligand, the clinical pharmacokinetics, efficacy, safety and cost-effectiveness of mirogabalin for the treatment of NP, offering clinical perspectives into potential benefits of NP-related syndrome or comorbidities.
View Article and Find Full Text PDFOrganometallics
November 2024
Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States.
This manuscript describes the synthesis of Os complexes supported by the diarylamido/bis(phosphine) PNP pincer ligand. Compound (PNP)OsH(CO) () was prepared by analogy with the previously reported . However, attempts to make (PNP)OsH () analogously to resulted in the formation of an unexpected compound () that is a product of addition of a BH unit across the Os-N bond in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!