The focused ion beam (FIB) was used to prepare cross sections of precisely selected regions of the digestive gland epithelium of a terrestrial isopod P. scaber (Isopoda, Crustacea) for scanning electron microscopy (SEM). The FIB/SEM system allows ad libitum selection of a region for gross morphologic to ultrastructural investigation, as the repetition of FIB/SEM operations is unrestricted. The milling parameters used in our work proved to be satisfactory to produce serial two-dimensional (2-D) cuts and/or three-dimensional (3-D) shapes on a submicrometer scale. A final, cleaning mill at lower ion currents was employed to minimize the milling artifacts. After cleaning, the milled surface was free of filament- and ridge-like milling artifacts. No other effects of the cleaning mill were observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sca.4950270106 | DOI Listing |
BMC Biotechnol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
Background: Successful treatment of pathogenic bacteria like Enterobacter Cloacae with bacteriophage (phage) counteract some hindrance such as phage stability and immunological clearance. Our research is focused on the encapsulation of phage HK6 within chitosan nanoparticles.
Result: Encapsulation significantly improves stability, efficacy, and delivery of phages.
Nat Neurosci
January 2025
Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany.
The sensation of mechanical stimuli is initiated by elastic gating springs that pull open mechanosensory transduction channels. Searches for gating springs have focused on force-conveying protein tethers such as the amino-terminal ankyrin tether of the Drosophila mechanosensory transduction channel NOMPC. Here, by combining protein domain duplications with mechanical measurements, electrophysiology, molecular dynamics simulations and modeling, we identify the NOMPC gating-spring as the short linker between the ankyrin tether and the channel gate.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Physiology, New York Medical College, Valhalla, NY, USA.
Non-invasive, low intensity focused ultrasound is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported.
View Article and Find Full Text PDFEnviron Res
January 2025
Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China; School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China. Electronic address:
This paper focuses on the research background of zeolite-based photocatalytic materials, the role of zeolites in photocatalytic materials, and their application in various fields. It focuses on the critical roles of zeolites in photocatalytic materials and their application prospects. It outlines the mechanisms of zeolites in different photocatalytic materials, including adsorption, structural stabilization, domain-limiting, electric field, catalysis, ion exchange, shape-selective, and solvation, which elucidates the potential advantages of zeolites in photocatalytic materials.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
Bone tissue regeneration presents a significant challenge in clinical treatment due to inadequate coordination between implant materials and reparative cells at the biomaterial-bone interfaces. This gap underscores the necessity of enhancing interaction modulation between cells and biomaterials, which is a crucial focus in bone tissue engineering. Metal-polyphenolic networks (MPN) are novel inorganic-organic hybrid complexes that are formed through coordination interactions between phenolic ligands and metal ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!