The active role played by xenogeneic endothelial cells in the indirect presentation pathway is not lymphocyte trans-co-stimulation.

Transpl Int

EA 3249 Cellules Hématopoïétiques, Hémostase et Greffe and IFR 135 Imagerie et Exploration fonctionelles, Université François Rabelais, Tours, France.

Published: May 2005

The human CD4+ T lymphocyte response to major histocompatibility complex (MHC) class II-negative porcine endothelial cells is dependent on the presence of human monocytes through a human leukocyte antigen (HLA) class II-restricted indirect presentation pathway. Because the role of porcine endothelial cells had been previously shown to do more than simply supply xenopeptides, co-stimulatory signals were analysed. Endothelial cells were shown to express the CD54, CD58, CD59 and CD86 transcripts; however, no membrane B7 molecule could be detected. Blocking experiments in a direct pathway model confirmed that porcine endothelial cells could provide co-stimulatory signals to human T cells through the CD2 and LFA-1 pathways. Nevertheless, the proliferation achieved in the indirect presentation model required co-stimulation by LFA-1, CD2 and CD28, engaged by co-stimulation molecules expressed in the cis-form by the human monocytes. These results clearly show that the active role played by the endothelial cells in the indirect pathway is not lymphocyte trans-co-stimulation and suggest that cis-co-stimulation dominates trans-co-stimulation when both are present.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00147-004-0773-9DOI Listing

Publication Analysis

Top Keywords

endothelial cells
24
indirect presentation
12
porcine endothelial
12
active role
8
role played
8
cells indirect
8
presentation pathway
8
pathway lymphocyte
8
lymphocyte trans-co-stimulation
8
human monocytes
8

Similar Publications

The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.

View Article and Find Full Text PDF

Background: Inflammation is a driver of thrombosis, but the phenomenon of thromboinflammation has been defined only recently, bringing together the multiple pathways involved. models can support the development of new therapeutics targeting the endothelium and also assess the existing immunomodulatory drugs, such as hydroxychloroquine, in modulating the inflammation-driven endothelial prothrombotic phenotype.

Objectives: To develop a model for thrombin generation (TG) on the surface of human endothelial cells (ECs) to assess pro/antithrombotic properties in response to inflammation.

View Article and Find Full Text PDF

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.

Bioact Mater

May 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.

Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.

View Article and Find Full Text PDF

Introduction: Systemic sclerosis is a complex disease characterized by the fibrosis and vasculopathy.

Aim: We aimed to assess scleroderma by examining involucrin, an early terminal differentiation marker of epidermal keratinocytes.

Material And Methods: Immunolocalization of involucrin was performed in healthy controls and patients with scleroderma lesions by using an immunofluorescence (IF) assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!