The alkylating agent cyclophosphamide (CP) is a prodrug requiring cytochrome P-450-mediated bioactivation to form the active 4-hydroxycyclophosphamide (4OHCP). Modifications in the rate of CP bioactivation may have implications for the effectiveness of CP therapy, especially in high-dose regimens. In this study, agents frequently co-administered with CP in high-dose chemotherapy regimens were tested for their possible inhibition of the bioactivation of CP in human liver microsomes. The Km and Vmax values for the conversion of CP to 4OHCP were 93 microM and 4.3 nmol/h.mg, respectively. No inhibition was observed for aciclovir, carboplatin, ciprofloxacine, granisetron, mesna, metoclopramide, ranitidine, roxitromycin and temazepam. Inhibition was observed for amphotericin B, dexamethasone, fluconazole, itraconazole, lorazepam, ondansetron and thiotepa, with IC50 values of 50, >100, >50, 5, 15, >100 and 1.25 microM, respectively. For all but thiotepa, these IC50 values were higher than the therapeutic drug levels and thus considered of no clinical relevance. We conclude that of the tested co-medicated agents, only thiotepa inhibited metabolism of CP to 4OHCP at clinically relevant concentrations, and may thereby influence therapeutic and toxic responses of CP therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001813-200503000-00013DOI Listing

Publication Analysis

Top Keywords

bioactivation human
8
human liver
8
liver microsomes
8
inhibition observed
8
thiotepa ic50
8
ic50 values
8
effects co-medicated
4
co-medicated drugs
4
drugs cyclophosphamide
4
bioactivation
4

Similar Publications

Application of antisense oligonucleotide drugs in amyotrophic lateral sclerosis and Huntington's disease.

Transl Neurodegener

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) are diverse in clinical presentation and are caused by complex and multiple factors, including genetic mutations and environmental factors. Numerous therapeutic approaches have been developed based on the genetic causes and potential mechanisms of ALS and HD. Currently, available treatments for various neurodegenerative diseases can alleviate symptoms but do not provide a definitive cure.

View Article and Find Full Text PDF

Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing.

Biofabrication

January 2025

College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao, Qingdao, Shandong, 266071, CHINA.

The design and development of advanced surgical sutures with appropriate structure and abundant bio-functions are urgently required for the chronic wound closure and treatment. In this study, an integrated technique routine combining modified electrospinning with hot stretching process was proposed and implemented to fabricate poly(L-lactic acid) (PLLA) nanofiber sutures, and the Salvia miltiorrhiza Bunge-Radix Puerariae herbal compound (SRHC) was encapsulated into PLLA nanofibers during the electrospinning process to enrich the biofunction of as-generated sutures. All the PLLA sutures loading without or with SRHC were found to exhibit bead-free and highly-aligned nanofiber structure.

View Article and Find Full Text PDF

Biophysiochemically favorable, antithrombotic and pro-endothelial coordination compound nanocoating of copper (II) with protocatechuic acid & nattokinase on flow-diverting stents.

Colloids Surf B Biointerfaces

January 2025

Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China. Electronic address:

Neurovascular flow-diverting stents (FDSs) are revolutionizing the paradigm for treatment of intracranial aneurysms, but they still face great challenges like post- implantation acute thrombosis and delayed reendothelialization. Surface modification is of crucial relevance in addressing such key issues. In this study, we fabricated an ultrathin nanocoating out of copper (II) together with protocatechuic acid (PCA) and nattokinase (NK) bioactive molecules on NiTi FDSs via a coordination chemistry approach, with favorable biophysiochemical interactions, to fulfill this goal.

View Article and Find Full Text PDF

Endurance exercise is widely recognized for its role in mitigating insulin resistance, yet the precise mechanisms remain unclear. In this Classics in Diabetes article, we revisit the article by Amati et al., "Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance: Another Paradox in Endurance-Trained Athletes?" Published in the October 2011 issue of Diabetes, this article was among the first to highlight the nuanced roles of exercise-induced changes in bioactive lipids such as ceramide and diacylglycerol (DAG) in insulin signaling.

View Article and Find Full Text PDF

This study aimed to evaluate the potential of phytochemicals from two native UAE plant species, Arthrocnemum macrostachyum and Tamarix nilotica, as anti-cancer agents. The plant extracts were obtained using two methods, maceration, and microwave-assisted extraction (MAE), and were subsequently evaluated for their in vitro cytotoxicity against three cancer cell lines: breast (MDA-MB-231), colon (HCT-116), and lung (A-549). Results suggest that: 1) MAE is more efficient than maceration in recovering metabolites from plant biomass based on measurements of total phenolic content, radical scavenging activity, and bioactivity of extracts based on in vitro cytotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!