Background: Reduced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a isoform) activity is a major determinant of reduced contractility in heart failure. Ca2+-ATPase inactivation can occur through SERCA2a nitration. We therefore investigated the role of SERCA2a nitration in heart failure.

Methods And Results: We measured SERCA2a levels and nitrotyrosine levels in tissue from normal and failing human hearts using Western blots. We found that nitrotyrosine levels in idiopathic dilated cardiomyopathic (DCM) hearts were almost double those of control hearts in age-matched groups. Nitrotyrosine was dominantly present in a single protein with the molecular weight of SERCA2a, and immunoprecipitation confirmed that the protein recognized by the nitrotyrosine antibody was SERCA2a. There was a positive correlation between the time to half relaxation and the nitrotyrosine/SERCA2a content (P<0.01) in myocytes isolated from control and DCM hearts. In experiments with isolated SR vesicles from porcine hearts, we also showed that the Ca pump is inactivated by peroxynitrite exposure, and inactivation was prevented by protein kinase A pretreatment.

Conclusions: We conclude that SERCA2a inactivation by nitration may contribute to Ca pump failure and hence heart failure in DCM.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.CIR.0000156461.81529.D7DOI Listing

Publication Analysis

Top Keywords

sarcoplasmic reticulum
8
reticulum ca2+-atpase
8
heart failure
8
serca2a nitration
8
nitrotyrosine levels
8
serca2a
6
increased nitration
4
nitration sarcoplasmic
4
ca2+-atpase human
4
human heart
4

Similar Publications

Obscurin is a giant protein that coordinates diverse aspects of striated muscle physiology. Obscurin immunoglobulin domains 58/59 (Ig58/59) associate with essential sarcomeric and Ca2+ cycling proteins. To explore the pathophysiological significance of Ig58/59, we generated the Obscn-ΔIg58/59 mouse model, expressing obscurin constitutively lacking Ig58/59.

View Article and Find Full Text PDF

The Role of RyR2 Mutations in Congenital Heart Diseases: Insights Into Cardiac Electrophysiological Mechanisms.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

Ryanodine receptor 2 (RyR2) protein, a calcium ion release channel in the sarcoplasmic reticulum (SR) of myocardial cells, plays a crucial role in regulating cardiac systolic and diastolic functions. Mutations in RyR2 and its dysfunction are implicated in various congenital heart diseases (CHDs). Studies have shown that mutations in the RYR2 gene, which encodes the RyR2 protein, are linked to several cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), calcium release deficiency syndrome (CRDS), and atrial fibrillation (AF).

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).

View Article and Find Full Text PDF

Ca/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates Basal Cardiac Pacemaker Function: Pros and Cons.

Cells

December 2024

Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.

The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca clock", sarcoplasmic reticulum-generated local submembrane Ca releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain.

View Article and Find Full Text PDF

The regulation of calcium signaling within cardiomyocytes is pivotal for maintaining cardiac function, with disruptions in sarcoplasmic reticulum (SR) calcium handling linked to various heart diseases. This review explores the emerging role of microRNAs (miRNAs) in modulating SR calcium dynamics, highlighting their influence on cardiomyocyte maturation, function, and disease progression. We present a comprehensive overview of the mechanisms by which specific miRNAs, such as miR-1, miR-24, and miR-22, regulate key components of calcium handling, including ryanodine receptors, SERCA, and NCX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!