Soybean suspension cell cultures were treated by H2O2 or nitric oxide (NO), to assess the mechanism leading to programmed cell death (PCD). Hydrogen peroxide (5 mM) induced PCD. Cells become necrotic at 20 mM H2O2, with cells exhibiting intermediate hallmarks before that (necrapoptotic cells). The level of ATP and of glucose-6-phosphate remained constant in cells undergoing PCD, while it decreased significantly in the necrotic ones. Mitochondria, isolated from 5 mM H2O2-treated (apoptotic) cells, showed that succinate-dependent oxygen consumption was slightly uncoupled, and the electrical potential difference (delta psi) weakly decreased. The addition of KCl to the delta psi formed determined a partial dissipation, which was higher than the dissipation observed in mitochondria from control cells. The addition of cyclosporin A (CsA) to de-energized mitochondria also induced delta psi formation, due to a K+ efflux from the matrix, which was decreased in mitochondria from treated cells. The same pattern of response was also observed in mitochondria isolated from 1 mM sodium nitroprusside (NO)-treated cells, exhibiting apoptotic symptoms. In mitochondria isolated from 20 mM H2O2-treated (necrotic) cells, succinate-dependent oxygen consumption was completely uncoupled, delta psi generation significantly inhibited, and CsA-dependent delta psi formation prevented. In addition, mitochondria isolated from control cells still underwent swelling, which was partially or completely prevented in mitochondria isolated from apoptotic or necrotic cells, respectively. The moderate swelling was accompanied by a slight rupture of the outer membrane and by a release of cytochrome c. These results point to the involvement of a K(+)ATP channel during the manifestation of PCD induced by H2O2 or NO in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/eri093 | DOI Listing |
Life Med
April 2024
Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Mitochondrial transplantation (MT) is a promising therapeutic strategy that involves introducing healthy mitochondria into damaged tissues to restore cellular function. This approach has shown promise in treating cardiac diseases, such as ischemia-reperfusion injury, myocardial infarction, and heart failure, where mitochondrial dysfunction plays a crucial role. Transplanting healthy mitochondria into affected cardiac tissue has resulted in improved cardiac function, reduced infract size, and enhanced cell survival in preclinical studies.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
Purpose: Oral lichen planus (OLP) is a chronic, immune-mediated inflammatory disease involving T cells. Mitochondrial fission plays a crucial role in T cell fate through structural remodeling. Nicotinamide adenine dinucleotide (NAD) regulates mitochondrial remodeling and function.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
Mitochondrial transplantation (MTx) offers a promising therapeutic approach to mitigate mitochondrial dysfunction in conditions such as ischemia-reperfusion (IR) injury. The quality and viability of donor mitochondria are critical to MTx success, necessitating the optimization of isolation protocols. This study aimed to assess a rapid mitochondrial isolation method, examine the relationship between mitochondrial size and membrane potential, and evaluate the potential benefits of Poloxamer 188 (P-188) in improving mitochondrial quality during the isolation process.
View Article and Find Full Text PDFChemistry
January 2025
ETH Zürich, Institute of Pharmaceutical Sciences, Höneggerberg, HCI H427, Vladimir Prelog Weg 4, 8093, Zürich, SWITZERLAND.
ATP synthase dysregulation has been implicated in many diseases, including cancer and neurodegenerative diseases. Whilst ATP synthase-targeting compounds have been reported, most are large or polar compounds and lack appropriate properties for a CNS drug. We designed, synthesised, and evaluated a novel series of ATP synthase targeting compounds, resulting in a 1,3,4-oxadiazin-5-one scaffold with improved physiochemical properties.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China. Electronic address:
Callistephus chinensis Nees is an herbaceous plant in the Asteraceae family that has various traditional effects, especially in preventing liver disease. Callistephus A (CA) is a sesquiterpene compound with a rare 6/7 ring skeleton, which has been isolated only from the Callistephus chinensis Nees, but whether CA protects the liver is unknown. Immunological liver injury (ILI) is a common liver disease mediated by the immune system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!