We derived microglia from mouse embryonic stem cells (ES cells) at very high density. Using the markers Mac1(+)/CD45(low) and Mac1(+)/CD45(high) to define microglia and macrophages, respectively, we show that Mac1(+) cells are induced by GM-CSF stimulation following neuronal differentiation of mouse ES cells using a five-step method. CD45(low) expression was high and CD45(high) expression was low on induced cells. We used a density gradient method to obtain a large amount of microglia-like cells, approximately 90% of Mac1(+) cells. Microglia-like cells expressed MHC class I, class II, CD40, CD80, CD86, and IFN-gammaR. The expression level of these molecules on microglia-like cells was barely enhanced by IFN-gamma. Intravenously transferred GFP(+) microglia derived from GFP(+) ES cells selectively accumulated in brain but not in peripheral tissues such as spleen and lymph node. GFP(+) cells were detected mainly in corpus callosum and hippocampus but were rarely seen in cerebral cortex, where Iba1, another marker of microglia, is primarily expressed. Furthermore, both GFP(+) and Iba1(+) cells exhibited a ramified morphology characteristic of mature microglia. These studies suggest that ES cell-derived microglia-like cells obtained using our protocol are functional and migrate selectively into the brain but not into peripheral tissues after intravenous transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2004.10.025DOI Listing

Publication Analysis

Top Keywords

microglia-like cells
16
cells
14
mouse embryonic
8
embryonic stem
8
stem cells
8
mac1+ cells
8
gfp+ cells
8
brain peripheral
8
peripheral tissues
8
microglia
5

Similar Publications

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.

View Article and Find Full Text PDF

Distinct UPR and Autophagic Functions Define Cell-Specific Responses to Proteotoxic Stress in Microglial and Neuronal Cell Lines.

Cells

December 2024

Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain.

Autophagy is a catabolic process involved in different cellular functions. However, the molecular pathways governing its potential roles in different cell types remain poorly understood. We investigated the role of autophagy in the context of proteotoxic stress in two central nervous system cell types: the microglia-like cell line BV2 and the neuronal-like cell line N2a.

View Article and Find Full Text PDF
Article Synopsis
  • Combined antiretroviral therapy (cART) has significantly enhanced the quality of life for people living with HIV (PLWH), but many older adults face HIV-associated neurocognitive disorders (HAND).
  • A new biological model using chimeric HIV (EcoHIV) has been developed in rats to study the neurological effects of HIV, but understanding its distribution in the brain remains a challenge.
  • In this study, EcoHIV was modified and injected into mice to investigate whether microglia are the primary cells containing HIV; results show that microglia are indeed the main reservoirs for HIV in the brain, highlighting the model's potential for exploring neurocognitive disorders.
View Article and Find Full Text PDF

Single-cell transcriptomics applied to cerebrospinal fluid (CSF) for elucidating the pathophysiology of neurologic diseases has produced only a preliminary characterization of CSF immune cells. CSF derives from and borders central nervous system (CNS) tissue, allowing for comprehensive accounting of cell types along with their relative abundance and immunologic profiles relevant to CNS diseases. Using integration techniques applied to publicly available datasets in combination with our own studies, we generated a compendium with 139 subjects encompassing 135 CSF and 58 blood samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!