Bone morphogenetic proteins (BMPs) have been extensively studied since the discovery of agents within bone that could induce bone formation at ectopic sites by Urist in the 1960s. Extensive preclinical research has been carried out showing the efficacy of these products in promoting bone healing. Clinical trials are encouraging, with meta-analysis of results revealing better rates of healing than treatment with autologous bone grafting (risk ratio [RR]: 0.845; 95% confidence interval [CI]: 0.772 - 0.924; p < 0.001 for clinical outcome and RR: 0.884; 95% CI: 0.825 - 0.948; p < 0.001 for radiological outcome). Preclinical and clinical safety assessments have revealed little evidence of toxic effects and there have been few reports of adverse events related to their use. A small rate of immunological reaction following administration, resulting in antibody formation, has been observed in some patients, without clinical consequence, although the long-term implications of this are unknown. Ongoing research is revealing that BMPs act on an extremely wide range of body tissues in a variety of manners and this is far from fully understood. It should be noted, however, that given the role of BMP as a differentiation factor, the production of undifferentiated neoplastic tissue seems unlikely. It has also been shown in an animal model that artificially administered BMP can cross the placenta and subsequently be detected in the growing embryo. As this area has been little investigated, use in pregnancy is currently contraindicated. Until the long-term safety profile is more fully documented it would seem sensible to continue to carefully control use and monitor patients closely. However, the current evidence is very promising.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14740338.4.1.75DOI Listing

Publication Analysis

Top Keywords

bone morphogenetic
8
morphogenetic proteins
8
bone
5
application bone
4
proteins orthopaedic
4
orthopaedic practice
4
practice efficacy
4
efficacy side
4
side effects
4
effects bone
4

Similar Publications

Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.

View Article and Find Full Text PDF

Mandibular Reconstruction With a Patient-Specific Implant Following Surgical Excision of an Acanthomatous Ameloblastoma in a Dog.

J Vet Dent

January 2025

Department of Dentistry, Oral and Maxillo-facial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Group, Swindon, UK.

Canine acanthomatous ameloblastoma (CAA) is an invasive benign epithelial odontogenic tumour most commonly affecting the mandible of large breed dogs. To the author's knowledge, this report describes the first computer-aided design patient-specific implant (PSI) that has been placed for a critical sized bone defect in mandibular reconstruction of a dog in the UK. The aim was to restore mandibular stability using a regenerative approach combining a titanium locking plate and compression-resistant matrix infused with recombinant human bone morphogenetic protein-2 (rhBMP-2) to bridge the 85 mm mandibular defect created by a segmental mandibulectomy.

View Article and Find Full Text PDF

Unlabelled: BACKGROUND CERVUS ELAPHUS SIBIRICUS: (CES) has been traditionally used in Korean clinics to promote fracture healing based on its function of tonifying the kidneys and strengthening bones. However, experimental data supporting its efficacy are still insufficient. The aim of this study investigated the bone-union properties of CES in a femoral fracture animal model and its corresponding molecular mechanisms.

View Article and Find Full Text PDF

Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.

View Article and Find Full Text PDF

Effect of photobiological regulation of green laser on orthodontic tooth retention in rats.

Lasers Med Sci

January 2025

Shanxi Medical University School and Hospital of Stomatology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China.

Green lasers have a stronger effect on promoting osteoblast differentiation, which is critical for orthodontic tooth retention. This study investigated the impact of green laser photobiomodulation on orthodontic tooth retention in rats. A total of 100 male Sprague-Dawley rats were divided into two groups: Group A (control) and Group B (green laser irradiation).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!