C1q is a subunit of the C1 complex that triggers activation of the complement classical pathway through recognition and binding of immune complexes. C1q also binds to nonimmune ligands such as the sulfated polysaccharide fucoidan, a potent anticomplementary agent. C1q was submitted for the first time to mass spectrometry analysis, yielding insights into its assembly and its interaction with fucoidan. The MALDI-TOF mass spectrometry technique on membrane allowed partial preservation of noncovalent interactions, allowing precise analysis of its substructure and estimation of the C1q molecular weight at 459520-461883, with an average mass of 460793 g x mol(-1). The disulfide-linked A-B and C-C dimers as well as the noncovalent structural unit (A-B:C)-(C:B-A) were detected, providing experimental support to the C1q model based on covalent and noncovalent associations of six heterotrimers. Trypsin treatment of native C1q led to proteolysis of the B chain only, at a single cleavage site (Arg(109)) located in the globular region. Unlike DNA, fucoidan protected C1q from trypsin cleavage, indicating that this polysaccharide binds to the B moiety of the globular head. Given the involvement of the C1q globular heads in the recognition of IgG, this interaction may account for the observed anticomplementary activity of fucoidan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi047802h | DOI Listing |
Cell Biochem Biophys
January 2025
Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, UP, India.
Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, Dermatology Hospital of Zhejiang Province, Huzhou, 313299, China.
Although an ongoing understanding of psoriasis vulgaris (PV) pathogenesis, little is known about the proteomic differences between moderate and severe psoriasis. In this cross-sectional study, we evaluated the proteomic differences between moderate and severe psoriasis using data-independent acquisition mass spectrometry (DIA-MS). 173 differentially expressed proteins (DEPs) were significantly differentially expressed between the two groups.
View Article and Find Full Text PDFNat Commun
January 2025
Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.
The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.
Multimodal imaging by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI MSI) and microscopy holds potential for understanding pathological mechanisms by mapping molecular signatures from the tissue microenvironment to specific cell populations. However, existing software solutions for MALDI MSI data analysis are incomplete, require programming skills and contain laborious manual steps, hindering broadly applicable, reproducible, and high-throughput analysis to generate impactful biological discoveries. Here, we present msiFlow, an accessible open-source, platform-independent and vendor-neutral software for end-to-end, high-throughput, transparent and reproducible analysis of multimodal imaging data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!