A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of meixner functions in estimation of Volterra kernels of nonlinear systems with delay. | LitMetric

Use of meixner functions in estimation of Volterra kernels of nonlinear systems with delay.

IEEE Trans Biomed Eng

Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh 112 11, Saudi Arabia.

Published: February 2005

Volterra series representation of nonlinear systems is a mathematical analysis tool that has been successfully applied in many areas of biological sciences, especially in the area of modeling of hemodynamic response. In this study, we explored the possibility of using discrete time Meixner basis functions (MBFs) in estimating Volterra kernels of nonlinear systems. The problem of estimation of Volterra kernels can be formulated as a multiple regression problem and solved using least squares estimation. By expanding system kernels with some suitable basis functions, it is possible to reduce the number of parameters to be estimated and obtain better kernel estimates. Thus far, Laguerre basis functions have been widely used in this framework. However, research in signal processing indicates that when the kernels have a slow initial onset or delay, Meixner functions, which can be made to have a slow start, are more suitable in terms of providing a more accurate approximation to the kernels. We, therefore, compared the performance of Meixner functions, in kernel estimation, to that of Laguerre functions in some test cases that we constructed and in a real experimental case where we studied photoreceptor responses of photoreceptor cells of adult fruitflies (Drosophila melanogaster). Our results indicate that when there is a slow initial onset or delay, MBF expansion provides better kernel estimates.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2004.840187DOI Listing

Publication Analysis

Top Keywords

meixner functions
12
volterra kernels
12
nonlinear systems
12
basis functions
12
estimation volterra
8
kernels nonlinear
8
better kernel
8
kernel estimates
8
slow initial
8
initial onset
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!