[Prevention of errors in health].

Ig Sanita Pubbl

Published: February 2005

Download full-text PDF

Source

Publication Analysis

Top Keywords

[prevention errors
4
errors health]
4
[prevention
1
health]
1

Similar Publications

Background: Chronic kidney disease (CKD) represents a significant public health challenge, with rates consistently on the rise. Enhancing kidney function prediction could contribute to the early detection, prevention, and management of CKD in clinical practice. We aimed to investigate whether deep learning techniques, especially those suitable for processing missing values, can improve the accuracy of predicting future renal function compared to traditional statistical method, using the Japan Chronic Kidney Disease Database (J-CKD-DB), a nationwide multicenter CKD registry.

View Article and Find Full Text PDF

In the cultivation of green chili peppers, the similarity between the fruit and background color, along with severe occlusion between fruits and leaves, significantly reduces the efficiency of harvesting robots. While increasing model depth can enhance detection accuracy, complex models are often difficult to deploy on low-cost agricultural devices. This paper presents an improved lightweight Pepper-YOLO model based on YOLOv8n-Pose, designed for simultaneous detection of green chili peppers and picking points.

View Article and Find Full Text PDF

Background: Optimal management of post-operative pain is a critical component of orthopedic surgical care. There is a heightened awareness of narcotic prescribing habits given the current "opioid epidemic." The lack of standardized protocols has led to increased errors, delayed access to prescribed medications, and excessive narcotic prescribing.

View Article and Find Full Text PDF

Introduction: Medication errors occur at any point of the medication management process and are a major cause of death and harm globally. The perioperative environment introduces challenges in identifying medication errors due to the frequent use of time-sensitive, high-alert medications in a dynamic and intricate setting. Pharmacists could potentially reduce the occurrence of these errors because of their training and expertise.

View Article and Find Full Text PDF

Predicting cobalt ion concentration in hydrometallurgy zinc process using data decomposition and machine learning.

Sci Total Environ

January 2025

State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China. Electronic address:

Solid waste is one of the primary contributors to environmental pollution currently, it is crucial to enhance the prevention and control of solid waste pollution in environmental management. The effectiveness of the second stage of purification in the industrial zinc hydrometallurgy is determined by the concentration of cobalt ion. Manual testing and monitoring of cobalt ion concentration are time consuming and costly, and prone to delays, which can result in discharge of cobalt ion concentration that does not meet the standards, leading to water pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!