Murine gammaherpesvirus 68 open reading frame 11 encodes a nonessential virion component.

J Virol

Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QP, United Kingdom.

Published: March 2005

Open reading frame 11 (ORF11) is a conserved gammaherpesvirus gene that remains undefined. We identified the product of murine gammaherpesvirus 68 (MHV-68) ORF11, p43, as a virion component with a predominantly perinuclear distribution in infected cells. MHV-68 lacking p43 grew normally in vitro but showed reduced lytic replication in vivo and a delay in seeding to the spleen. Subsequent latency amplification was normal. Thus, MHV-68 ORF11 encoded a virion component that was important for in vivo lytic replication but dispensable for the establishment of latency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC548481PMC
http://dx.doi.org/10.1128/JVI.79.5.3163-3168.2005DOI Listing

Publication Analysis

Top Keywords

virion component
12
murine gammaherpesvirus
8
open reading
8
reading frame
8
mhv-68 orf11
8
lytic replication
8
gammaherpesvirus open
4
frame encodes
4
encodes nonessential
4
nonessential virion
4

Similar Publications

Characterization of the host specificity of the SH3 cell wall binding domain of the staphylococcal phage 88 endolysin.

Arch Microbiol

January 2025

Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.

Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).

View Article and Find Full Text PDF

The discovery that infections of viruses are pervasive among insects has considerable potential for future applications, such as new strategies for pest control through the manipulation of virus-host interactions. However, few studies can be found that aim to minimize (for beneficial insects) or maximize (for pests) virus impact or virulence. Viruses generally employ molecular mechanisms that deviate from the cells' to increase their replication efficiency and to avoid the immune response.

View Article and Find Full Text PDF

Post-translational modifications play crucial roles in viral infections, yet many potential modifications remain unexplored in orthoflavivirus biology. Here we demonstrate that the UFMylation system, a post-translational modification system that catalyzes the transfer of UFM1 onto proteins, promotes infection by multiple orthoflaviviruses including dengue virus, Zika virus, West Nile virus, and yellow fever virus. We found that depletion of the UFMylation E3 ligase complex proteins UFL1 and UFBP1, as well as other UFMylation machinery components (UBA5, UFC1, and UFM1), significantly reduces infectious virion production for orthoflaviviruses but not the hepacivirus, hepatitis C.

View Article and Find Full Text PDF

RING finger protein 5 is a key anti-FMDV host factor through inhibition of virion assembly.

PLoS Pathog

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Foot-and-mouth disease virus (FMDV) are small, icosahedral viruses that cause serious clinical symptoms in livestock. The FMDV VP1 protein is a key structural component, facilitating virus entry. Here, we find that the E3 ligase RNF5 interacts with VP1 and targets it for degradation through ubiquitination at the lys200 of VP1, ultimately inhibiting virus replication.

View Article and Find Full Text PDF

Unlabelled: SARS-CoV-2 infection induces interferon (IFN) response by plasmacytoid dendritic cells (pDCs), but the underlying mechanisms are poorly defined. Here, we show that the bulk of the IFN-I release comes from pDC sensing of infected cells and not cell-free virions. Physical contact (or conjugates) between pDCs and infected cells is mediated through CD54-CD11a engagement, and such conjugate formation is required for efficient IFN-I production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!