Many viruses that assemble their capsids in the eukaryotic cytoplasm require a threshold concentration of capsid protein to achieve capsid assembly. Strategies for achieving this include maintaining high levels of capsid protein synthesis and targeting to specific sites to raise the effective concentration of capsid polypeptides. To understand how different viruses achieve the threshold capsid protein concentration required for assembly, we used cell-free systems to compare capsid assembly of hepatitis B virus (HBV) and three primate lentiviruses. Capsid formation of these diverse viruses in a common eukaryotic extract was dependent on capsid protein concentration. HBV capsid assembly was also dependent on the presence of intact membrane surfaces. Surprisingly, not all of the primate lentiviral capsid proteins examined required myristoylation and intact membranes for assembly, even though all contain a myristoylation signal. These findings reveal significant diversity in how different capsid proteins assemble in the same cellular extract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virol.2004.12.024 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
J Clin Microbiol
December 2024
Department of Pediatrics, University of Florida, Gainesville, Florida, USA.
Cholera rapid diagnostic tests (RDTs) are vulnerable to virulent bacteriophage predation. We hypothesized that an enhanced cholera RDT that detects the common virulent bacteriophage ICP1 might serve as a proxy for pathogen detection. We previously developed a monoclonal antibody (mAb) to the ICP1 major capsid protein.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Physics of the Condensed Matter, Universitat de Barcelona, Barcelona, Spain.
All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Viral genomes are transported between cells using various structural solutions such as spherical or filamentous protein cages, alone or in combination with lipid envelopes, in assemblies of varying complexity. Morphogenesis of the new infectious particles (virions) encompasses capsid assembly from individual components (proteins, and membranes when required), genome packaging, and maturation. This final step is crucial for full infectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!