Widespread production of knockout and transgenic mice has led to an increased use of mice as animal models for studies of normal- and patho-physiology. Hence, the precise mapping of central transmitter/peptide systems in the mouse has become essential for the interpretation of functional studies and for the correct correlation with findings obtained in the rat, primates and/or human. In this regard, the current study reports the autoradiographic localization of [(125)I]-galanin (GAL) binding sites in brain of the common C57BL/6J and 129OlaHsd mouse strains, as well as in GAL and galanin receptor-1 (GalR1) knockout (KO) mice. In C57BL/6J and 129OlaHsd mice, [(125)I]-GAL binding sites were detected throughout the brain, including moderate-high relative densities in the basal ganglia (caudate putamen, nucleus [n.] accumbens, olfactory tubercle, substantia nigra), limbic regions (septum, bed n. stria terminalis, ventral hippocampus, amygdala), cingulate, retrosplenial, entorhinal cortex, centro-lateral/medial thalamic n., preoptic/lateral hypothalamus, midbrain (superior colliculus, periaqueductal gray), pons/medulla oblongata (parabrachial, pontine reticular and solitary tract n.) and cerebellar cortex. [(125)I]-GAL binding levels were low or absent in main olfactory bulb, neocortex, ventrolateral/geniculate thalamic n., dorsal hippocampus, inferior colliculus and cranial motor n. In simultaneous determinations, relative [(125)I]-GAL binding site densities in brain were generally lower in C57BL/6J than in 129OlaHsd mice, while the density and distribution of central binding in the GAL-KO mouse was essentially identical to that in its background-129OlaHsd strain. In contrast, no specific [(125)I]-GAL binding was detected in any region of GalR1-KO mouse brain, revealing that under the experimental conditions used, the peptide ligand binding is predominantly (exclusively) to the GalR1 subtype. This evaluation of GAL receptor site distribution in mouse brain has revealed similarities and some differences with the equivalent system in rat and provides a valuable reference for future comparative studies of central GAL transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2004.11.023 | DOI Listing |
Neurobiol Aging
December 2004
Mental Illness Research, Education, and Clinical Centers, Veteran Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
Increased galanin (GAL) may be associated with the cognitive deficits characteristic of Alzheimer's disease (AD). However, both increased and decreased GAL receptor density has been reported in AD brain. Previous studies indicate pre-treatment with guanine nucleotides displaces endogenous GAL from GAL receptors (GALR), providing an indirect measurement of GALR occupancy.
View Article and Find Full Text PDFBrain Res
August 2000
Department of Pharmacology, Monash University, Wellington Road, Victoria 3800, Clayton, Australia.
The neuropeptide galanin (GAL) has been implicated in the neural response to a number of stressors including restraint; however, the effect of restraint stress on GAL receptor density in the central nervous system (CNS) has not been investigated. Normotensive (Wistar-Kyoto; WKY) and hypertensive (spontaneously hypertensive; SHR) rats were subjected to a daily 60-min restraint stress paradigm for 0 (control), 1, 3, 5 or 10 consecutive days, and the density of [125I]-GAL binding sites following exposure to restraint was compared between strains using quantitative autoradiography. Significant differences in basal (no stress) levels of GAL receptor density between WKY and SHR were detected in regions such as the central nucleus of the amygdala (Ce) and ventromedial hypothalamus (VMH) (P<0.
View Article and Find Full Text PDFNeurobiol Aging
March 1999
Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle 98195, USA.
Galanin (GAL) has been proposed to be an inhibitory modulator of cholinergic memory pathways because it acts within the hippocampus to inhibit the release and antagonize the postsynaptic actions of acetylcholine. Here we have used: 1) slice binding and quantitative autoradiography to assess the density and occupancy of GAL receptors; and 2) in situ hybridization histochemistry to assess expression of the GALR1 receptor subtype in the ventral hippocampus of 3-month-old and 21-month-old Fischer 344 male rats. We detected a small but significant (p < or = 0.
View Article and Find Full Text PDFRegul Pept
February 1998
Women's Health Research Institute, Wyeth-Ayerst Research, Radnor, PA 19087, USA.
The neuropeptide galanin (GAL) has a widespread distribution throughout the human cortex. The entorhinal cortex (ENT) plays a crucial role in the transfer of cortico-cortical information related to memory and displays severe degeneration in Alzheimer's disease (AD). However, very little is known about the pharmacology of the GAL receptor (GALR) in normal human ENT.
View Article and Find Full Text PDFNeuroendocrinology
September 1997
INSERM U422, Lille, France.
The semiquantitative distribution of mRNA encoding for rat galanin receptor (GAL-R1) was examined by in situ hybridization in the rat hypothalamus using a 35S-riboprobe. Most hypothalamic nuclei expressed GAL-R1 mRNA. In the anterior hypothalamus, high levels of expression were found in the medial preoptic area, paraventricular and supraoptic nuclei.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!