A series of in vitro experiments were performed to determine the efficacy of generalised phase- and amplitude-modulated sequences for low-power nonlinear microbubble contrast imaging. The microbubble agent Definity (Dupont, Boston, MA) was exposed to sequences in which the phase and amplitude were changed from one pulse to the next. Echoes from these pulses were combined to suppress or enhance particular linear or nonlinear components. The results show that established two-pulse pulse-inversion and amplitude-modulation approaches perform similarly, providing 14 +/- 1 dB of enhancement, compared with the echoes from the linear scatterer. A two-pulse combined phase and amplitude sequence achieved an additional 4 +/- 1 dB of enhancement. This improvement is due to improved preservation of second and third order harmonic signals, while maintaining the suppression of the linear signals. These results were obtained at low power, below the threshold of microbubble destruction, and are applicable to real-time perfusion imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2004.10.004DOI Listing

Publication Analysis

Top Keywords

phase amplitude
12
imaging microbubble
8
microbubble contrast
8
+/- enhancement
8
optimising phase
4
amplitude modulation
4
modulation schemes
4
schemes imaging
4
microbubble
4
contrast agents
4

Similar Publications

In this Letter, we propose and experimentally validate a high-fidelity and adaptive forward-phase-based vibration sensing using a Wiener filter (WF). In commercial coherent digital subcarrier multiplexing (DSCM) systems under external cavity lasers (ECLs), frequency-domain pilot tones (FPTs) in subcarrier intervals are employed for dynamic frequency offset estimation (FOE), carrier phase estimation (CPE), and polarization demultiplexing. The phase estimated by the CPE module is processed with the WF to achieve high-fidelity extraction of the vibration-induced phase.

View Article and Find Full Text PDF

Fourier ptychographic microscopy (FPM) can provide high-throughput imaging by computationally combining low-resolution images at different spatial frequencies within the Fourier domain. The core algorithm for FPM reconstruction draws upon phase retrieval techniques, including methods such as the ptychographic iterative engine (PIE), regularized PIE (rPIE), and embedded pupil function FPM (EPRY-FPM). The calibration of the physical setup plays a crucial role in the quality of the reconstructed high space-bandwidth product (SPB) image.

View Article and Find Full Text PDF

We present a non-interferometric technique for quantitative phase imaging (QPI) that is cost-effective, easily integrated into standard microscopes, and capable of wide-field imaging with noncoherent light. Our method measures the phase gradient through optical differentiation using spatially variable amplitude filters, accommodating a range of transmission functions, including commercially available variable neutral-density filters. This flexibility is made possible by a general relationship we derive.

View Article and Find Full Text PDF

Fourier ptychographic microscopy (FPM) enables high-resolution, wide-field imaging of both amplitude and phase, presenting significant potential for applications in digital pathology and cell biology. However, artifacts commonly observed at the boundaries of reconstructed images can significantly degrade imaging quality and phase retrieval accuracy. These boundary artifacts are typically attributed to the use of the fast Fourier transform (FFT) on non-periodic images.

View Article and Find Full Text PDF

Metasurfaces have exhibited excellent capabilities in controlling main characteristics of electromagnetic fields. Thus, a lot of significant achievements have been attained in many areas especially in the fields of hologram and near-field imaging. However, some of these designs are implemented in a manner of interleaved subarrays that complicates the design and makes them difficult to achieve integration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!