The distance between the TATAAAAG box and initiator element of the strong adenovirus major late promoter was systematically altered to determine the optimal spacing for simultaneous recognition of both elements. We find that the TATAAAAG element is strongly dominant over the initiator for specification of the start site. The wild type spacing of 23 base pairs between TATAAAAG and +1A is optimal for promoter strength and selective recognition of the A-start. Initiation is constrained to a window spaced 19-26 base pairs downstream of (-31)-TATAAAAG-(-24), and A-starts are favored over alternate starts only when spaced between 21 and 25 base pairs downstream of TATAAAAG. We report an expanded TATAAAAG and initiator promoter consensus for vertebrates and plants. Plant promoters of this class are (A-T)-rich and have an A-rich (non-template strand) core promoter sequence element downstream of +1A.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2004.12.028DOI Listing

Publication Analysis

Top Keywords

base pairs
12
simultaneous recognition
8
adenovirus major
8
major late
8
late promoter
8
tataaaag box
8
box initiator
8
initiator element
8
pairs downstream
8
tataaaag
6

Similar Publications

sp. nov. isolated from flowers of winter savoury L.

Int J Syst Evol Microbiol

January 2025

Laboratorio de Bacterias Lcticas y Probiticos, Instituto de Agroqumica y Tecnologa de Alimentos (IATA-CSIC), Av. Agustn Escardino 7, 46980 Paterna, Spain.

A novel strain of the genus , named He02, was isolated from flowers of L. in a survey for lactic acid bacteria associated with wild and cultivated plants in the metropolitan area of Valencia, Spain. Partial 16S rRNA gene sequencing revealed a similarity of 99% to DSM 23037=Ryu1-2.

View Article and Find Full Text PDF

Dimerizing DNA-AgNCs a C-Ag-C structure for fluorescence sensing with dual-output signals.

Chem Commun (Camb)

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China.

The unique insertion capability of Ag into cytosine-cytosine (C-Ag-C) mismatch-base pairs enables precise fabrication of DNA-trapped silver nanoclusters (DNA-AgNCs) through varying the DNA sequences, thereby offering precise assembly of DNA-AgNCs and demonstrating great fluorescence applications. However, most of the DNA-AgNC-based fluorescence sensors have a single output signal. Herein, we developed a dimerized DNA-AgNC system through C-Ag-C connection at the 3'-end of a designed DNA.

View Article and Find Full Text PDF

The topography of nullomer-emerging mutations and their relevance to human disease.

Comput Struct Biotechnol J

December 2024

Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.

Nullomers are short DNA sequences (11-18 base pairs) that are absent from a genome; however, they can emerge due to mutations. Here, we characterize all possible putative human nullomer-emerging single base pair mutations, population variants and disease-causing mutations. We find that the primary determinants of nullomer emergence in the human genome are the presence of CpG dinucleotides and methylated cytosines.

View Article and Find Full Text PDF

Objective: Ocular toxoplasmosis, caused by , is a significant cause of posterior uveitis and vision impairment globally. Accurate diagnosis is essential to prevent retinal damage and optimise treatment. This study aimed to compare three diagnostic methods funduscopy, serology (ELISA), and PCR in detecting ocular toxoplasmosis in patients at ECWA Eye Hospital, Kano, Nigeria.

View Article and Find Full Text PDF

Gene editing technologies, particularly clustered regularly interspersed short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, have revolutionized the ability to modify gene sequences in living cells for therapeutic purposes. Delivery of CRISPR/Cas ribonucleoprotein (RNP) is preferred over its DNA and RNA formats in terms of gene editing effectiveness and low risk of off-target events. However, the intracellular delivery of RNP poses significant challenges and necessitates the development of non-viral vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!