The membrane-bound acyl-CoA elongase complex is a key enzyme responsible for erucoyl-CoA synthesis. Among the four putative genes encoding the four moieties of this complex in Brassica napus seeds, only one has been characterized, the Bn-fae1 gene, which encodes the 3-ketoacyl-CoA synthase. The genes encoding the other enzymes (3-ketoacyl-CoA reductase, 3-hydroxyacyl-CoA dehydratase and trans-2,3-enoyl-CoA reductase) have not been identified. We cloned two 3-ketoacyl-CoA reductase cDNA isoforms, Bn-kcr1 and Bn-kcr2, from B. napus seeds. Their function was identified by heterologous complementation in yeast by restoring elongase activities. The comparison of Bn-kcr mRNA expression in different B. napus tissues showed that the genes were preferentially expressed in seeds and roots. We also investigated the regulation of gene expression in High Erucic Acid Rapeseed (HEAR) and in Low Erucic Acid Rapeseed (LEAR) cultivars during seed development. The co-expression of Bn-fae1 and Bn-kcr observed in HEAR cultivar during seed development was different in LEAR cultivar, suggesting that expression of both genes was directly or indirectly linked.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2004.11.014 | DOI Listing |
Acta Crystallogr D Struct Biol
August 2024
Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an αβ tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site.
View Article and Find Full Text PDFPharmaceuticals (Basel)
May 2024
Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2024
Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China. Electronic address:
Very long-chain fatty acids (VLCFAs) are fatty acids with a carbon chain length greater than 18 carbons (>C18) and exhibit various functions, such as in skin barrier formation, liver homeostasis, myelin maintenance, spermatogenesis, retinal function, and anti-inflammation. VLCFAs are absorbed by dietary or elongated from endogenous hexadecanoyl acids (C16). Similar to long-chain fatty acid synthesis, VLCFAs elongation begins with acyl-CoA and malonyl-CoA as sources, and the length of the acyl chain is extended by two carbon units in each cycle.
View Article and Find Full Text PDFJ Plant Res
July 2023
College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China.
Using effective genes to improve crop stress tolerance through genetic engineering is an important way to stabilize crop yield and quality across complex climatic environments. Integrin-like AT14A, as a continuum of the cell wall-plasma membrane-cytoskeleton, functions in the regulation of cell wall synthesis, signal transduction, and the response to stress. In this study, AT14A was overexpressed in Solanum lycopersicum L.
View Article and Find Full Text PDFArch Biochem Biophys
March 2023
Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
Nabumetone, a nonsteroidal anti-inflammatory prodrug, is converted to a pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA); however, it is 11-fold more efficiently converted to 4-(6-methoxy-2-naphthyl)butan-2-ol (MNBO) via a reduction reaction in human hepatocytes. The goal of this study was to identify the enzyme(s) responsible for MNBO formation from nabumetone in the human liver. MNBO formation by human liver microsomes (HLM) was 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!