Inherited defects in keratins.

Clin Dermatol

Department of Paediatric Dermatology, Our Lady's Hospital for Sick Children, Crumlin Dublin 12, Ireland.

Published: June 2005

In the years following the initial reports of keratin gene mutations in epidermolysis bullosa simplex, great strides have been made in understanding the basic biology of human keratins and in understanding the etiology and pathogenesis of a number of specific human single gene disorders. A total of 19 human keratin genes is now linked to specific diseases. This article summarizes current knowledge in relation to basic keratin biology, known disease associations, and genotype correlation in this diverse and complex group of conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clindermatol.2004.09.014DOI Listing

Publication Analysis

Top Keywords

inherited defects
4
defects keratins
4
keratins years
4
years initial
4
initial reports
4
reports keratin
4
keratin gene
4
gene mutations
4
mutations epidermolysis
4
epidermolysis bullosa
4

Similar Publications

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disorder leading to deleterious brain effects. While animal models suggested that MPS I severely affects white matter (WM), whole-brain diffusion tensor imaging (DTI) analysis was not performed due to MPS-related morphological abnormalities. 3T DTI data from 28 severe (MPS IH, treated with hematopoietic stem cell transplantation-HSCT), 16 attenuated MPS I patients (MPS IA) enrolled under the study protocol NCT01870375, and 27 healthy controls (HC) were analyzed using the free-water correction (FWC) method to resolve macrostructural partial volume effects and unravel differences in DTI metrics accounting for microstructural abnormalities.

View Article and Find Full Text PDF

Background And Aims: Primary Coenzyme Q (CoQ) deficiency caused by defects is a clinically heterogeneous mitochondrial condition characterized by reduced levels of CoQ in tissues. Next-generation sequencing has lately boosted the genetic diagnosis of an increasing number of patients. Still, functional validation of new variants of uncertain significance is essential for an adequate diagnosis, proper clinical management, treatment, and genetic counseling.

View Article and Find Full Text PDF

Zellweger syndrome; identification of mutations in and gene in Saudi families.

Ann Med

December 2025

Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia.

Background: Peroxisome biogenesis disorders (PBD) affect multiple organ systems. It is characterized by neurological dysfunction, hypotonia, ocular anomalies, craniofacial abnormalities, and absence of peroxisomes in fibroblasts. PBDs are associated with mutations in any of fourteen different genes, which are involved in peroxisome biogenesis.

View Article and Find Full Text PDF

Background: myotilinopathy is a very rare inherited muscle disease that belongs to the group of myofibrillar myopathies. These diseases share a common alteration of the sarcomere organization at the level of the Z disk resulting in pathological protein aggregation, autophagic abnormalities, and ultimately muscle degeneration. Most reported cases are due to dominant missense mutations in the MYOT gene, two of which are largely recurrent.

View Article and Find Full Text PDF

Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!