A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data on dose-volume effects in the rat spinal cord do not support existing NTCP models. | LitMetric

Data on dose-volume effects in the rat spinal cord do not support existing NTCP models.

Int J Radiat Oncol Biol Phys

Kernfysisch Versneller Instituut, Groningen, The Netherlands.

Published: March 2005

Purpose: To evaluate several existing dose-volume effect models for their ability to describe the occurrence of white matter necrosis in rat spinal cord after irradiation with small proton beams.

Methods And Materials: A large number of dose-volume effect models has been fitted to data on the occurrence of white matter necrosis after irradiation with small proton beams. The fitting was done with the maximum likelihood method. For each model, the goodness of fit was calculated. An empirical tolerance dose-volume (eTDV) model was designed to describe data obtained after uniform irradiation.

Results: The eTDV model, the critical element model, and critical volume model with inclusion of the repair-by-migration principle described by Shirato, were able to describe the data obtained after irradiation with uniform dose distributions of varying sizes. However, none of the models under investigation was able to describe all the data. Extension of the developed empirical model with a repair mechanism with a limited range resulted in a good description of the tolerance doses.

Conclusions: In the rat spinal cord, a nonlocal repair mechanism, acting from nonirradiated to irradiated tissue, plays an important role in the (prevention of the) occurrence of white matter necrosis after irradiation. Models that take into account this effect need to be developed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2004.10.035DOI Listing

Publication Analysis

Top Keywords

rat spinal
12
spinal cord
12
occurrence white
12
white matter
12
matter necrosis
12
describe data
12
dose-volume models
8
irradiation small
8
small proton
8
necrosis irradiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!