A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. | LitMetric

Purpose: With this modeling study, we wanted to estimate the potential gain from incorporating fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning in the radiotherapy treatment planning of CT Stage N2-N3M0 non-small-cell lung cancer (NSCLC) patients.

Methods And Materials: Twenty-one consecutive patients with clinical CT Stage N2-N3M0 NSCLC were studied. For each patient, two three-dimensional conformal treatment plans were made: one with a CT-based planning target volume (PTV) and one with a PET-CT-based PTV, both to deliver 60 Gy in 30 fractions. From the dose-volume histograms and dose distributions on each plan, the dosimetric factors predicting esophageal and lung toxicity were analyzed and compared. For each patient, the maximal tolerable prescribed radiation dose for the CT PTV vs. PET-CT PTV was calculated according to the constraints for the lung, esophagus, and spinal cord. From these results, the tumor control probability (TCP) was estimated, assuming a clinical dose-response curve with a median toxic dose of 84.5 Gy and a gamma(50) of 2.0. Dose-response curves were modeled, taking into account geographic misses according to the accuracy of CT and PET in our institutions.

Results: The gross tumor volume of the nodes decreased from 13.7 +/- 3.8 cm(3) on the CT scan to 9.9 +/- 4.0 cm(3) on the PET-CT scan (p = 0.011). All dose-volume characteristics for the esophagus and lungs decreased in favor of PET-CT. The esophageal V(45) (the volume of the esophagus receiving 45 Gy) decreased from 45.2% +/- 4.9% to 34.0% +/- 5.8% (p = 0.003), esophageal V(55) (the volume of the esophagus receiving 55 Gy) from 30.6% +/- 3.2% to 21.9% +/- 3.8% (p = 0.004), mean esophageal dose from 29.8 +/- 2.5 Gy to 23.7 +/- 3.1 Gy (p = 0.004), lung V(20) (the volume of the lungs minus the PTV receiving 20 Gy) from 24.9% +/- 2.3% to 22.3% +/- 2.2% (p = 0.012), and mean lung dose from 14.7 +/- 1.3 Gy to 13.6 +/- 1.3 Gy (p = 0.004). For the same toxicity levels of the lung, esophagus, and spinal cord, the dose could be increased from 56.0 +/- 5.4 Gy with CT planning to 71.0 +/- 13.7 Gy with PET planning (p = 0.038). The TCP corresponding to these doses was estimated to be 14.2% +/- 5.6% for CT and 22.8% +/- 7.1% for PET-CT planning (p = 0.026). Adjusting for geographic misses by PET-CT vs. CT planning yielded TCP estimates of 12.5% and 18.3% (p = 0.009) for CT and PET-CT planning, respectively.

Conclusion: In this group of clinical CT Stage N2-N3 NSCLC patients, use of FDG-PET scanning information in radiotherapy planning reduced the radiation exposure of the esophagus and lung, and thus allowed significant radiation dose escalation while respecting all relevant normal tissue constraints. This, together with a reduced risk of geographic misses using PET-CT, led to an estimated increase in TCP from 13% to 18%. The results of this modeling study support clinical trials investigating incorporation of FDG-PET information in CT-based radiotherapy planning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2004.06.205DOI Listing

Publication Analysis

Top Keywords

+/-
16
clinical stage
12
stage n2-n3m0
12
modeling study
12
geographic misses
12
pet-ct planning
12
planning
10
patients clinical
8
n2-n3m0 non-small-cell
8
lung
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!