Prokaryotic DNA methyltransferases (MTases) are used as experimental and research tools in molecular biology and molecular genetics due to their ability to recognize and transfer methyl groups to target bases in specific DNA sequences. As a practical tool, prokaryotic DNA MTases can be used in recombinant DNA technology for in vitro alteration and enhancing of cleavage specificity of restriction endonucleases. The ability of prokaryotic DNA MTases to methylate cytosine residues in specific sequences, which are also methylated in eukaryotic DNA, makes it possible to use them as analytical reagent for determination of the site-specific level of methylation in eukaryotic DNA. In vivo DNA methylation by prokaryotic DNA MTases is used in different techniques for probing chromatin structure and protein-DNA interactions. Additional prospects are opened by development of the methods of DNA methylation targeted to predetermined DNA sequences by fusion of DNA MTases to DNA binding proteins. This review will discuss the application of prokaryotic DNA MTases of Type II in the methods and approaches mentioned above.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2004.02.048 | DOI Listing |
Annu Rev Biophys
January 2025
1CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA; email:
Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Achieving targeted hypermutation of specific genomic sequences without affecting other regions remains a key challenge in continuous evolution. To address this, we evolved a T7 RNA polymerase (RNAP) mutant that synthesizes single-stranded DNA (ssDNA) instead of RNA in vivo, while still exclusively recognizing the T7 promoter. By increasing the error rate of the T7 RNAP mutant, it generates mutated ssDNA that recombines with homologous sequences in the genome, leading to targeted genomic hypermutation.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Institute of Plant Science and Resources, Okayama University, Okayama, Japan.
A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.
View Article and Find Full Text PDFEnviron Res
January 2025
Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!