Patients that were hemispherectomized due to brain lesions early in life sometimes have remarkably well-preserved tactile functions on their paretic body half. This has been attributed to developmental neuroplasticity. However, the tactile examinations generally have been fairly crude, and subtle deficits may not have been revealed. We investigated monofilament detection and three types of tactile directional sensibility in four hemispherectomized patients and six healthy controls. Patients were examined bilaterally on the face, forearm and lower leg. Normal subjects were examined unilaterally. Following each test of directional sensibility, subjects were asked to rate the intensity of the stimulation. On the nonparetic side, results were almost always in the normal range. On the paretic side, the patients' capacity for monofilament detection was less impaired than their directional sensibility. Despite the disturbed directional sensibility on their paretic side the patients rated tactile sensations evoked by the stimuli, on both their paretic and nonparetic body halves, as more intense than normals. Thus, mechanisms of plasticity seem adequate for tactile detection and intensity coding but not for more complex tactile functions such as directional sensibility. The reason for the high vulnerability of tactile directional sensibility may be that it depends on spatially and temporally precise afferent information processed in a distributed cortical network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropsychologia.2004.06.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!