Objective: To compare neutralizing antibody response between horses vaccinated against West Nile virus (WNV) and horses that survived naturally occurring infection.

Design: Cross-sectional observational study.

Animals: 187 horses vaccinated with a killed WNV vaccine and 37 horses with confirmed clinical WNV infection.

Procedure: Serum was collected from vaccinated horses prior to and 4 to 6 weeks after completion of an initial vaccination series (2 doses) and 5 to 7 months later. Serum was collected from affected horses 4 to 6 weeks after laboratory diagnosis of infection and 5 to 7 months after the first sample was obtained. The IgM capture ELISA, plaque reduction neutralization test (PRNT), and microtiter virus neutralization test were used.

Results: All affected horses had PRNT titers > or = 1:100 at 4 to 6 weeks after onset of disease, and 90% (18/20) maintained this titer for 5 to 7 months. After the second vaccination, 67% of vaccinated horses had PRNT titers > or = 1:100 and 14% had titers < 1:10. Five to 7 months later, 33% (28/84) of vaccinated horses had PRNT titers > or = 1:100, whereas 29% (24/84) had titers < 1:10. Vaccinated and clinically affected horses' end point titers had decreased by 5 to 7 months after vaccination.

Conclusions And Clinical Relevance: A portion of horses vaccinated against WNV may respond poorly. Vaccination every 6 months may be indicated in certain horses and in areas of high vector activity. Other preventative methods such as mosquito control are warranted to prevent WNV infection in horses.

Download full-text PDF

Source
http://dx.doi.org/10.2460/javma.2005.226.240DOI Listing

Publication Analysis

Top Keywords

horses
13
horses vaccinated
12
vaccinated horses
12
horses prnt
12
prnt titers
12
titers 1100
12
west nile
8
nile virus
8
vaccinated
8
vaccinated clinically
8

Similar Publications

Effects of Hippotherapy and Horse-Riding Simulators on Gross Motor Function in Children with Cerebral Palsy: A Systematic Review.

J Clin Med

January 2025

Department of Physiotherapy, Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain.

: Cerebral palsy (CP) can have a negative impact on gross motor function. Conventional hippotherapy and horse-riding simulators (HRS) have shown promising results on gross motor function in populations with neurological disorders. This review aims to update the knowledge on the effectiveness of hippotherapy on gross motor function in children with CP.

View Article and Find Full Text PDF

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

Wireless Sensor Network Coverage Optimization Using a Modified Marine Predator Algorithm.

Sensors (Basel)

December 2024

School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China.

To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping is integrated into the initialization step to improve the searching ability of the early stage.

View Article and Find Full Text PDF

Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed.

Int J Mol Sci

December 2024

Departamento de Genética, Universidad de Córdoba, CN IV KM 396 Edificio Gregor Mendel, 14007 Córdoba, Spain.

Analyzing genetic variability and inbreeding trends is essential for effective breed management in animal populations. To this, the characterization of runs of homozygosity (ROH) provides a good genomic approach to study the phenomena. The Polo Argentino (PA) breed, globally recognized as the best adapted to playing polo, is known for its strong influence of Thoroughbreds, intense selective breeding, and extensive use of reproductive biotechnologies.

View Article and Find Full Text PDF

Comparative Evaluation of Different Mint Species Based on Their In Vitro Antioxidant and Antibacterial Effect.

Plants (Basel)

January 2025

Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly utca 1., H-2100 Gödöllő, Hungary.

In our research six different mint species (peppermint, spearmint (five different chemotypes), Horse mint, mojito mint, apple mint (two different chemotypes), bergamot mint) have been evaluated by referring to their chemical (essential oil (EO) content and composition) and in vitro biological (antibacterial, antioxidant effect) characteristics. The EO amount of the analyzed mint populations varied between 1.99 and 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!