Objective: To describe effects of lifetime food restriction on causes of death and the association between body-mass characteristics and time of death in dogs.
Design: Paired-feeding study.
Animals: 48 dogs from 7 litters.
Procedures: Dogs were paired, and 1 dog in each pair was fed 25% less food than its pair mate from 8 weeks of age until death. Numerous morphometric and physiologic measures were obtained at various intervals throughout life. Associations of feeding group to time and causes of death were evaluated, along with important associated factors such as body composition components and insulin-glucose responses.
Results: Median life span was significantly longer for the group that was fed 25% less food, whereas causes of death were generally similar between the 2 feeding groups. High body-fat mass and declining lean mass significantly predicted death 1 year prior to death, and lean body composition was associated with metabolic responses that appeared to be integrally involved in health and longevity.
Conclusions And Clinical Relevance: Results were similar to results of diet restriction studies in rodents and primates, reflecting delayed death from species- and strain-specific intrinsic causes. Clinicians should be aware that unplanned body mass changes during mid- and later life of dogs may indicate the need for thorough clinical evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/javma.2005.226.225 | DOI Listing |
Omega (Westport)
January 2025
Department of History, Sogang University, Seoul, South Korea.
Under Japanese rule in 1912, cremation was legalized in Korea, marking a shift from a strictly prohibited practice to an accepted funeral option. Initially viewed as a Japanese custom, cremation gradually transformed into a "civilized" choice, a perspective pushed by Japanese colonial authorities and some Korean modernizers. However, this narrative overlooks the gradual acceptance of cremation among Koreans.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Centre for Ecological Dynamics in a Novel Biosphere, Section of EcoInformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus 8000, Denmark.
Otol Neurotol
February 2025
Department of Otolaryngology-Head and Neck Surgery.
Objective: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.
Study Design: Prospective, double-blinded, observational study of fall risk scores between trained observers and those of IMU-HAs.
Setting: Tertiary referral center.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!