One-electron oxidation of beta-amyloid peptide: sequence modulation of reactivity.

Free Radic Biol Med

Laboratoire de Chimie Physique, UMR 8000, Université Paris-Sud, 91405 Orsay Cedex, France.

Published: September 2004

Amyloid beta peptide (Abeta) is a 39 to 43 amino-acid-long peptide implicated in Alzheimer's disease. One of its mechanisms of toxicity is related to its redox properties. Therefore we studied its one electron oxidation using azide free radicals produced in gamma and pulse radiolysis, and compared the results with those obtained with the reverse sequence Abeta(40-1). HPLC analysis combined with absorption, fluorescence, Raman spectroscopy, and MALDI-TOF MS were used for product identification. Met35 was shown to be the target in Abeta(1-40); oxidation leads to a major compound that is Abeta with methionine sulfoxide. Similarly, oxidation of fragment Abeta(29-40) also leads to methionine sulfoxide. For Abeta(40-1), Met35 is not reactive and Tyr10 is the target of azide radicals. The major products are peptide dimer linked by dityrosine and trimer. The lowering of the one-electron reduction potential of the MetS+/Met couple, which was proposed, is in agreement with our findings. To our knowledge, this is the first time that such a drastic effect of the primary sequence is observed in a small peptide. In addition, it is also the first experimental demonstration of the sensitivity of the one-electron reduction potential of methionine on neighboring groups.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2004.06.015DOI Listing

Publication Analysis

Top Keywords

methionine sulfoxide
8
one-electron reduction
8
reduction potential
8
peptide
5
one-electron oxidation
4
oxidation beta-amyloid
4
beta-amyloid peptide
4
peptide sequence
4
sequence modulation
4
modulation reactivity
4

Similar Publications

Metabolomic profiling of saliva from cystic fibrosis patients.

Sci Rep

January 2025

CEINGE-Biotecnologie avanzate Franco Salvatore, Via G. Salvatore 486, Naples, 80145, Italy.

The development of targeted therapies that correct the effect of mutations in patients with cystic fibrosis (CF) and the relevant heterogeneity of the clinical expression of the disease require biomarkers correlated to the severity of the disease useful for monitoring the therapeutic effects. We applied a targeted metabolomic approach by LC-MS/MS on saliva samples from 70 adult CF patients and 63 age/sex-matched controls to investigate alterations in metabolic pathways related to pancreatic insufficiency (PI), Pseudomonas aeruginosa (PA) colonization, CF liver disease (CFLD), and CF related diabetes (CFRD). Sixty salivary metabolites were differentially expressed, with 11 being less abundant and 49 more abundant in CF patients.

View Article and Find Full Text PDF

E. coli Nissle 1917 improves gut microbiota composition and serum metabolites to counteract atherosclerosis via the homocitrulline/Caspase 1/NLRP3/GSDMD axis.

Int J Med Microbiol

December 2024

Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Article Synopsis
  • The probiotic E. coli Nissle 1917 (EcN) was studied for its effects on atherosclerosis in mice fed a high-fat diet, revealing its potential to alleviate disease progression.
  • EcN treatment reduced atherosclerotic plaque formation, improved cholesterol levels, and inhibited the expression of pyroptosis-related proteins linked to inflammation.
  • Further analysis showed that EcN regulated gut microbiota and metabolite levels, suggesting a mechanism for its beneficial effects, although antibiotics partially reversed these outcomes.
View Article and Find Full Text PDF

25.91%-Efficiency and Durable Inverted Perovskite Solar Cells Enabled by a Multifunctional Molecule Mediated Precursor Engineering.

Small

December 2024

School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.

The stability of the precursor is essential for producing high-quality perovskite films with minimal non-radiative recombination. In this study, methionine sulfoxide (MTSO), which features multiple electron-donation sites, is strategically chosen as a precursor stabilizer and crystal growth mediator for inverted perovskite solar cells (PSCs). MTSO stabilizes the precursor by inhibiting the oxidation of iodide ions and passivates charged traps through coordination and hydrogen bonding interactions.

View Article and Find Full Text PDF

Dissection of major QTLs and candidate genes for seedling stage salt/drought tolerance in tomato.

BMC Genomics

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Background: As two of the most impactful abiotic stresses, salt and drought strongly affect tomato growth and development, especially at the seedling stage. However, dissection of the genetic basis underlying salt/drought tolerance at seedling stage in tomato remains limited in scope.

Results: Here, we reported an analysis of major quantitative trait locus (QTL) and potential causal genetic variations in seedling stage salt/drought tolerance in recombinant inbred lines (n = 201) of S.

View Article and Find Full Text PDF

Polyphenols are well-known for their antioxidant properties, but their prooxidative activity remain less understood. This study quantitatively examined the formation of hydrogen peroxide (HO) during the autooxidation of nine different polyphenols in model systems, investigating how it impacts protein oxidation and protein-polyphenol covalent adduct formation. Polyphenols (4 mM) generated HO in the range of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!