A microchip electrophoresis method coupled with laser-induced fluorescence (LIF) detection was established for simultaneous determination of two kinds of intracellular signaling molecules (reactive oxygen species, ROS, and reduced glutathione, GSH) related to apoptosis and oxidative stress. As the probe dihydrorhodamine-123 (DHR-123) can be converted intracellularly by ROS to the fluorescent rhodamine-123 (Rh-123), and the probe naphthalene-2,3-dicarboxaldehyde (NDA) can react quickly with GSH to produce a fluorescent adduct, rapid determination of Rh-123 and GSH was achieved on a glass microchip within 27 s using a 20 mM borate buffer (pH 9.2). The established method was tested to measure the intracellular ROS and GSH levels in acute promyelocytic leukemia (APL)-derived NB4 cells. An elevation of intracellular ROS and depletion of GSH were observed in apoptotic NB4 cells induced by arsenic trioxide (As(2)O(3)) at low concentration (1-2 microM). Buthionine sulfoximine (BSO), in combination with As(2)O(3) enhanced the decrease of reduced GSH to a great extent. The combined treatment of As(2)O(3) and hydrogen peroxide (H(2)O(2)) led to an inverse relationship between the concentrations of ROS and GSH obtained, showing the proposed method can readily evaluate the generation of ROS, which occurs simultaneously with the consumption of the inherent antioxidant.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200410136DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
reduced glutathione
8
microchip electrophoresis
8
intracellular ros
8
ros gsh
8
nb4 cells
8
gsh
7
ros
6
simultaneous ultrarapid
4

Similar Publications

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.

View Article and Find Full Text PDF

Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.

View Article and Find Full Text PDF

Oxidative stress in critically ill neonatal foals.

J Vet Intern Med

January 2025

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.

Background: Oxidative injury occurs in septic people, but the role of oxidative stress and antioxidants has rarely been evaluated in foals.

Objectives/hypothesis: To measure reactive oxygen species (ROS), biomarkers of oxidative injury, and antioxidants in neonatal foals. We hypothesized that ill foals would have higher blood concentrations of ROS and biomarkers of oxidative injury and lower concentrations of antioxidants compared to healthy foals.

View Article and Find Full Text PDF

Liver ischemia-reperfusion (IR) injury is a common complication following liver surgery, significantly impacting the prognosis of liver transplantation and other liver surgeries. Betaine-homocysteine methyltransferase (BHMT), a crucial enzyme in the methionine cycle, has been previously confirmed the pivotal role in hepatocellular carcinoma, and it has also been demonstrated that BHMT inhibits inflammation, apoptosis, but its role in liver IR injury remains unknow. Following I/R injury, we found that BHMT expression was significantly upregulated in human liver transplant specimens, mice and hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!