We have recently described a new method to determine physiological thiols, in which the quantification of plasma homocysteine, cysteine, cysteinylglycine, glutathione, and glutamylcysteine was achieved after derivatization with 5-iodoacetamidofluorescein. Samples were separated and measured by capillary electrophoresis with laser-induced fluorescence in an uncoated fused-silica capillary, using a phosphate/borate run buffer and the organic base N-Methyl-D-glucamine as effective electrolyte addictive to obtain a baseline peak separation. In this paper, we propose an improvement of our method useful for the analysis of the intracellular thiols in different cultured cells. In particular, we studied run buffer and injection conditions in order to increase the sensitivity of the assay and we found that, by incrementing two times the injected volume and using the water plug before the sample injection, the sensitivity of our previous method was increased by about ten times. To maintain a good resolution between peaks, particularly between homocysteine and the internal standard d-penicillamine, we lengthened the run time by incrementing the concentration of the electrolyte buffer and the organic base d-glucamine and by decreasing the cartridge temperature from 40 to 25 degrees C. After these changes in electrophoretical parameters, cellular thiols were baseline-resolved in less than 14 min instead of 9 min as in our previous method, but the limit of quantification is increased from 50 to 1 nmol/L. This new procedure allows also to measure the intracellular thiols commonly found at low concentration, such as cysteinylglycine, glutamylcysteine, and homocysteine. The new analytical method performance was assessed by measuring the intracellular thiols in three different cell lines, i.e., HUVEC, ECV304, and R1 stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200406191DOI Listing

Publication Analysis

Top Keywords

intracellular thiols
12
cellular thiols
8
buffer organic
8
organic base
8
previous method
8
thiols
6
method
5
highly sensitive
4
sensitive simultaneous
4
simultaneous detection
4

Similar Publications

Nrf2 Regulates Basal Glutathione Production in Astrocytes.

Int J Mol Sci

January 2025

Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA.

Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2) pups.

View Article and Find Full Text PDF

(-)-Epigallocatechin-3-Gallate and Quercetin Inhibit Quiescin Sulfhydryl Oxidase 1 Secretion from Hepatocellular Carcinoma Cells.

Antioxidants (Basel)

January 2025

State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China.

Liver cancer is one of the most prevalent cancers worldwide. The first-line therapeutic drug sorafenib offers only a moderate improvement in patients' conditions. Therefore, an approach to enhancing its therapeutic efficacy is urgently needed.

View Article and Find Full Text PDF

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer targeted delivery and release of the drug, potentially increasing treatment efficiency and alleviating side effects.

View Article and Find Full Text PDF

Synergistic Enhancement of Ferroptosis via Mitochondrial Accumulation and Photodynamic-Controlled Release of an Organogold(I) Cluster Prodrug.

J Am Chem Soc

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!