Contemporary approaches for vaccination and immunotherapy are often capable of eliciting strong T-cell responses against tumor antigens. However, such responses are not parallel to clinical tumor regression. The development of evasion mechanisms within tumor microenvironment may be responsible for poor therapeutic responses. We report here that constitutive or inducible expression of B7-H1, a B7 family molecule widely expressed by cancers, confers resistance to therapeutic anti-CD137 antibody in mice with established tumors. The resistance is accompanied with failure of antigen-specific CD8+ CTLs to destroy tumor cells without impairment of CTL function. Blockade of B7-H1 or PD-1 by specific monoclonal antibodies could reverse this resistance and profoundly enhance therapeutic efficacy. Our findings support that B7-H1/PD-1 forms a molecular shield to prevent destruction by CTLs and implicate new approaches for immunotherapy of human cancers.
Download full-text PDF |
Source |
---|
Carbohydr Polym
March 2025
Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:
The combination of chemotherapy and gene therapy holds promise in treating cancer. A key strategy is to use small interfering RNAs (siRNAs) to silence programmed death-ligand 1 (PD-L1) expression in cancer cells, disrupting tumor immune evasion and enhancing anticancer treatments, particularly when used in conjunction with chemotherapy drugs such as doxorubicin (Dox). However, effective codelivery of drugs and genes requires carefully designed carriers and complex synthesis procedures.
View Article and Find Full Text PDFCombined immune checkpoint blockade (ICB) and chemoradiation (CRT) is approved in patients with locally advanced cervical cancer (LACC) but optimal sequencing of CRT and ICB is unknown. NRG-GY017 (NCT03738228) was a randomized phase I trial of atezolizumab (anti-PD-L1) neoadjuvant and concurrent with CRT (Arm A) vs. concurrent with CRT (Arm B) in patients with high-risk node-positive LACC.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.
View Article and Find Full Text PDFCancer Med
January 2025
Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland.
Background: Immune checkpoint inhibition therapies have provided remarkable results in numerous metastatic cancers, including mismatch repair-deficient (dMMR) colorectal cancer (CRC). To evaluate the potential for PD-1 blockade therapy in a large population-based cohort, we analyzed the tumor microenvironment and reviewed the clinical data and actualized treatment of all dMMR CRCs in Central Finland province between 2000 and 2015.
Material And Methods: Of 1343 CRC patients, 171 dMMR tumors were identified through immunohistochemical screening.
Clin Transl Med
January 2025
Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
Background: Immunotherapy is beneficial for some colorectal cancer (CRC) patients, but immunosuppressive networks limit its effectiveness. Cancer-associatedfibroblasts (CAFs) are significant in immune escape and resistance toimmunotherapy, emphasizing the urgent need for new treatment strategies.
Methods: Flow cytometric, Western blotting, proteomics analysis, analysis of public database data, genetically modified cell line models, T cell coculture, crystal violetstaining, ELISA, metabonomic and clinical tumour samples were conducted to assess the role of EDEM3 in immune escape and itsmolecular mechanisms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!