AI Article Synopsis

  • KSHV/HHV-8 is linked to diseases like Kaposi sarcoma and primary effusion lymphoma, with VEGF-A being crucial for its growth due to its role in forming new blood vessels (angiogenesis).
  • Analysis showed that KSHV-infected hematopoietic cells have higher levels of B-Raf and VEGF-A compared to uninfected cells, and blocking B-Raf signaling significantly reduces VEGF-A expression.
  • B-Raf signaling also enhances the ability of endothelial cells to form tubular structures, highlighting its importance in KSHV-infected cells, although no mutations in the B-Raf gene were found in infected cell lines.

Article Abstract

Kaposi sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) is etiologically linked to Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease. Vascular endothelial growth factor-A (VEGF-A) is one of the essential factors required in KSHV pathogenesis, mainly due to its ability to mediate angiogenesis. In this report we analyzed the relationship between Raf and VEGF-A expression in KSHV-infected hematopoietic cells. All of the KSHV-infected cell lines (derived from PEL) expressed higher levels of B-Raf and VEGF-A when compared with uninfected cells. Inhibition of Raf to mitogen-induced extracellular kinase (MEK) to extracellular signal-related kinase (ERK) signaling, either by the use of MEK inhibitor (PD98059) or by siRNA specific to B-Raf, significantly lowered VEGF-A expression. In addition, B-Raf-induced VEGF-A expression was demonstrated to be sufficient to enhance tubule formation in endothelial cells. Interestingly, we did not observe mutation in the B-Raf gene of the KSHV-infected PEL cell lines. Taken together, we report for the first time the ability of Raf-associated signaling to play a role in the expression of VEGF-A in KSHV-infected hematopoietic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2004-09-3683DOI Listing

Publication Analysis

Top Keywords

vegf-a expression
12
vascular endothelial
8
endothelial growth
8
growth factor-a
8
kaposi sarcoma-associated
8
kshv-infected hematopoietic
8
hematopoietic cells
8
cell lines
8
vegf-a
6
cells
5

Similar Publications

Background: Angiogenesis, the formation of new blood vessels from preexisting ones via capillary sprouting, is a crucial process in tumor growth and metastasis. As a tumor's angiogenic capacity increases, its microvasculature, measured by micro vessel density (MVD), also increases. This study aims to evaluate the expression of Vascular Endothelial Growth Factor (VEGF) and CD34 in oral epithelial dysplasia and oral squamous cell carcinoma through immunohistochemical methods.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

Bovine tuberculosis is mainly caused by Mycobacterium bovis. Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis which provides variable disease protection.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF), also known as VEGF-A, has been linked to various diseases, such as wet age-related macular degeneration (wAMD) and cancer. Even though there are VEGF inhibitors that are currently commercially available in clinical applications, severe adverse effects have been associated with these treatments. There is still a need to develop novel VEGF-based therapeutics against these VEGF-related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!