Recently, we identified thioredoxin-interacting protein (TXNIP) as the most dramatically glucose-induced gene in our human islet microarray study. TXNIP is a regulator of the cellular redox state, but its role in pancreatic beta-cells and the mechanism of its regulation by glucose remain unknown. We therefore generated a stable transfected beta-cell line (INS-1) overexpressing human TXNIP and found that TXNIP overexpression induced apoptosis as assessed by Bax, Bcl2, caspase-3, and cleaved caspase-9 as well as Hoechst staining. Interestingly, islets of insulin-resistant/diabetic mice (AZIP-F1, BTBRob/ob) demonstrated elevated TXNIP expression, suggesting that TXNIP may play a role in glucotoxicity and the beta-cell loss observed under these conditions. Furthermore, we found that glucose-induced TXNIP transcription is not dependent on glucose metabolism and is mediated by a distinct carbohydrate response element (ChoRE) in the human TXNIP promoter consisting of a perfect nonpalindromic repeat of two E-boxes. Transfection studies demonstrated that this ChoRE was necessary and sufficient to confer glucose responsiveness. Thus, TXNIP is a novel proapoptotic beta-cell gene elevated in insulin resistance/diabetes and up-regulated by glucose through a unique ChoRE and may link glucotoxicity and beta-cell apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2004-1378 | DOI Listing |
J Orthop Translat
January 2025
Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
Background: RANKL and SCLEROSTIN antibodies have provided a strong effective choice for treating osteoporosis in the past years, which suggested novel molecular target identification and therapeutic strategies development are important for the treatment of osteoporosis. The therapeutic effect of verapamil, a drug previously used for cardiovascular diseases, on diabetes was due to the inhibition of TXNIP expression, which has also been reported as a target in mice osteoporosis. Whether verapamil-inhibited TXNIP expression is related to osteoporosis and how it works on the molecular level is worthy to be explored.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China.
Studies have shown that the prognosis of dental implant treatment in patients with diabetes is not as good as that in the non-diabetes population. The nerve plays a crucial role in bone metabolism, but the role and the mechanism of peripheral nerves in regulating peri-implant osteogenesis under Type 2 diabetes mellitus (T2DM) situation remains unclear. In this study, it was shown that high glucose-stimulated Schwann cells (SCs) inhibited peri-implant osteogenesis via their exosomes.
View Article and Find Full Text PDFJ Ginseng Res
January 2025
The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
Background: Vascular endothelial dysfunction (VED) is one of the main pathogenic events in pulmonary arterial hypertension (PAH). Previous studies have demonstrated that the ginsenoside Rg1 (Rg1) can ameliorate PAH, but the mechanism by which Rg1 affects pulmonary VED in hypoxia-induced PAH remains unclear.
Methods: Network pharmacology, molecular docking and other experiments were used to explore the mechanisms by which Rg1 affects PAH.
Front Nutr
January 2025
Aging and Metabolism Research Program, Oklahoma City, OK, United States.
Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA.
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!